Please wait a minute...

机械工程学报  2022, Vol. 58 Issue (4): 183-190    DOI: 10.3901/JME.2022.04.183
  运载工程 本期目录 | 过刊浏览 | 高级检索 |
基于动应力的地铁构架疲劳损伤与疲劳寿命计算
谢树强1, 王斌杰1, 王文静1, 张浩楠2, 李强1, 姜朝勇3
1. 北京交通大学机械与电子控制工程学院 北京 100044;
2. 北京轨道交通技术装备集团有限公司 北京 100068;
3. 中车长春轨道客车股份有限公司 长春 130062
Calcultion for Fatigue Damage and Fatigue Life of Metro Bogie Based on Dynamic Stress
XIE Shuqiang1, WANG Binjie1, WANG Wenjing1, ZHANG Haonan2, LI Qiang1, JIANG Chaoyong3
1. School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044;
2. Beijing Railway Transit Technology Equipment Group Co., Ltd., Beijing 100068;
3. CRRC Changchun Railway Vehicles Co., Ltd., Changchun 130062
全文: PDF(1132 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 作为轨道车辆走行部的极关键结构,转向架构架的服役安全性受到极大重视与关注。以新设计的地铁车辆动车转向架样本构架为研究对象,基于其在位使用状态下的动应力进行疲劳损伤与疲劳寿命研究。结合车辆运行状态数据,研究构架关键部位的损伤分布特征,分析构架疲劳损伤快速累积的原因。针对样本构架关键部位:计算其裂纹萌生寿命;基于雨流计数后的应力幅子样完成应力幅分布核密度估计;建立裂纹扩展模型,采用蒙特卡洛法与反函数法计算构架关键部位不同运行里程下的累积失效概率。结果表明,构架累积失效概率随运行里程增加而快速增加,裂纹萌生后对应于97.5%可靠度的运营里程为3万km;构架疲劳寿命为裂纹萌生寿命与扩展寿命之和,97.5%可靠度下为48.39万km。研究结果为进一步提升构架抗疲劳设计、优化转向架检修周期提供研究基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢树强
王斌杰
王文静
张浩楠
李强
姜朝勇
关键词 地铁转向架构架动应力疲劳损伤疲劳寿命    
Abstract:As the key structure of the running gear of rail vehicles, the service safety of bogie frame has received great attention. Therefore, the newly designed bogie frame sample of metro vehicle is taken as the research object, and the fatigue damage and fatigue life are studied based on its dynamic stress in service. Combined with the vehicle running state data, the damage distribution characteristics of the bogie’s key parts are studied, the reasons for the rapid accumulation of fatigue damage are also analyzed. For the key parts of the bogie frame sample: the crack initiation life is calculated; the kernel density of stress amplitude distribution is estimated, which is based on the stress amplitude samples after rain flow counting; the crack propagation model is established; and by the use of Monte Carlo method and inverse function method, the cumulative failure probability under different operating mileage is calculated. The results show that the cumulative failure probability of the bogie frame increases rapidly with the increase of operating mileage, and the operating mileage corresponding to 97.5% reliability is 30,000 km after crack initiation; the fatigue life of the frame is the sum of crack initiation life and propagation life, and it is 483 900 km under 97.5% reliability. The research results provide a research basis for further improving the anti fatigue performance of the frame and optimizing the maintenance cycle of the bogie.
Key wordsmetro bogie frame    dynamic stress    fatigue damage    fatigue life
收稿日期: 2021-04-01      出版日期: 2022-05-18
ZTFLH:  U270  
基金资助:国家自然科学基金资助项目(52172397)。
通讯作者: 王斌杰(通信作者),男,1979年出生,博士,副教授,硕士研究生导师。主要研究方向为轨道车辆载荷谱与疲劳可靠性。E-mail:bjwang2@bjtu.edu.cn   
作者简介: 谢树强,男,1996年出生。主要研究方向为地铁构架载荷谱与可靠性。E-mail:18121417@bjtu.edu.cn
引用本文:   
谢树强, 王斌杰, 王文静, 张浩楠, 李强, 姜朝勇. 基于动应力的地铁构架疲劳损伤与疲劳寿命计算[J]. 机械工程学报, 2022, 58(4): 183-190.
XIE Shuqiang, WANG Binjie, WANG Wenjing, ZHANG Haonan, LI Qiang, JIANG Chaoyong. Calcultion for Fatigue Damage and Fatigue Life of Metro Bogie Based on Dynamic Stress. Journal of Mechanical Engineering, 2022, 58(4): 183-190.
链接本文:  
http://qikan.cmes.org/jxgcxb/CN/10.3901/JME.2022.04.183      或      http://qikan.cmes.org/jxgcxb/CN/Y2022/V58/I4/183
[1] 王文静,刘志明,李强,等. CRH2动车转向架构架疲劳强度分析[J].北京交通大学学报,2009,33(1):5-9. WANG Wenjing,LIU Zhiming,LI Qiang,et al. Fatigue strength analysis of CRH2 motor bogie frame[J]. Journal of Beijing Jiaotong University,2009,33(1):5-9.
[2] 马思群,刘寒,孙彦彬,等.基于ANSYS/PDS的铁路机车转向架构架可靠性分析[J].计算机仿真,2019,36(9):168-172. MA Siqun,LIU Han,SUN Yanbin,et al. Reliability analysis of railway locomotive steering frame based on ANSYS/PDS[J]. Computer Simulation,2019,36(9):168-172.
[3] SVETOSLAV S,VLADISLAV M. Comparative analysis of the results from static strength calculations and strength tests of an Y25Ls-K bogie frame[J]. MATEC Web of Conferences,2017,133:1-4.
[4] OZSOY M,PEHILVAN K,FIRAT M,et al. Structural strength and fatigue life calculation of Y32 bogie frame by finite element method[J]. Acta Physica Polonica A, 2015,128(2):327-329.
[5] 战立超,付媛媛,李国辉,等.基于标准载荷工况与高频振动工况的高速动车组转向架构架疲劳强度对比分析[J].城市轨道交通研究,2020,23(2):133-136. ZHAN Lichao,FU Yuanyuan,LI Guohui,et al. Comparative analysis on fatigue strength of high speed EMU bogie frame based on standard load working condition and high frequency vibration working condition[J]. Urban Mass Transit,2020,23(2):133-136.
[6] 文孝霞,姜路,杜子学,等.基于不同焊缝结构的单轨车辆转向架构架疲劳分析[J].重庆交通大学学报,2021,40(1):134-139. WEN Xiaoxia,JIANG Lu,DU Zixue,et al. Fatigue analysis of monorail vehicle bogie frame based on different weld structure[J]. Journal of Chongqing Jiaotong University,2021,40(1):134-139.
[7] 梁红琴,蔡慧,赵永翔,等.高速客车转向架构架焊接接头疲劳可靠性分析[J].机械科学与技术,2015,34(6):925-929. LIANG Hongqin,CAI Hui,ZHAO Yongxiang,et al. Fatigue reliability analysis of welded joints for bogie frame of high-speed passenger car[J]. Mechanical Science and Technology for Aerospace Engineering,2015,34(6):925-929.
[8] 刘德昆,李强,林浩博,等.高速列车转向架构架结构的疲劳可靠性模型[J].中国铁道科学,2017,38(5):100-106. LIU Dekun,LI Qiang,LIN Haobo,et al. Fatigue reliability model of bogie frame structure for high-speed train[J]. China Railway Science,2017,38(5):100-106.
[9] CHEN Daoyun,XIAO Qian,MOU Minghui,et al. Study on establishment of standardized load spectrum on bogie frames of high-speed trains[J]. Acta Mechanica Sinica,2019,35(4):812-827.
[10] 吴越,韩健,刘佳,等.高速列车车轮多边形磨耗对轮轨力和转向架振动行为的影响[J].机械工程学报,2018,54(4):37-46.WU Yue,HAN Jian,LIU Jia,et al. Effect of high-speed train polygonal wheels on wheel/rail contact force and bogie vibration[J]. Journal of Mechanical Engineering,2018,54(4):37-46.
[11] WU Xingwen,CHI Maoru,GAO Hao. Damage tolerances of a railway axle in the presence of wheel polygonalizations[J]. Engineering Failure Analysis,2016,66:44-59.
[12] WU Xingwen,CHI Maoru,WU Pingbo. Influence of polygonal wear of railway wheels on the wheel set axle stress[J]. Vehicle System Dynamic,2015,53(11):1535-1554.
[13] 李伟,曾全君,朱士友,等.地铁钢轨波磨对车辆和轨道动态行为的影响[J].交通运输工程学报,2015(1):34-42. LI Wei,ZENG Quanjun,ZHU Shiyou,et al. Effect of metro rail corrugation on dynamic behaviors of vehicle and track[J]. Journal of Traffic and Transportation Engineering,2015(1):34-42.
[14] 谷永磊,赵国堂,金学松,等.高速铁路钢轨波磨对车辆-轨道动态响应的影响[J].中国铁道科学,2015,36(4):27-31. GU Yonglei,ZHAO Guotang,JIN Xuesong,et al. Effect of rail corrugation of high speed railway on vehicle-track coupling dynamic response[J]. China Railway Science,2015,36(4):27-31.
[15] LING Liang,LI Wei,FOO E,et al. Investigation into the vibration of metro bogies induced by rail corrugation[J]. Chinese Journal Mechanical Engineering,2017,30(1):93-102.
[16] 汤阿妮.基于核密度估计算法的飞机载荷谱统计技术[J].北京航空航天大学学报,2011,37(6):654-657,664. TANG Ani. Technique of aircraft loads spectrum statistics based on kernel density estimation[J]. Journal of Beijing University of Aeronautics and Astronautics,2011,37(6):654-657,664.
[17] XU Xiaoyuan,YAN Zheng,XU Shaolun. Estimating wind speed probability distribution by diffusion-based kernel density method[J]. Electric Power Systems Research,2015,121:28-37.
[18] LIAO Fangfang,WANG Wei. Parameter calibrations and application of micromechanical fracture models of structural steels[J]. Structural Engineering and Mechanics,2012,42(2):153-174.
[19] 张委袖,王斌杰,李强,等.机车抱轴箱疲劳裂纹扩展寿命的可靠性研究[J].铁道机车车辆,2005(4):30-32. ZHANG Weixiu,WANG Binjie,LI Qiang,et al. Reliability study of fatigue crack propagation life of axial suspending tube on locomotive[J]. Railway Locomotive&Car,2005(4):30-32.
[20] 任伟平.焊接钢桥结构细节疲劳行为分析及寿命评估[D].成都:西南交通大学,2008. REN Weiping. Fatigue behavior and fatigue life evaluation of structural details in welded steel girder bridges[D]. Chengdu:Southwest Jiaotong University,2008.
[21] 朱晓玲,姜浩.任意概率分布的伪随机数研究和实现[J].计算机技术与发展,2007(12):116-118,168. ZHU Xiaoling,JIANG Hao. Study on pseudo-random number of arbitrariness probability distributing and its implementation[J]. Computer Technology and Development,2007(12):116-118,168.
[1] 茅健, 赵嫚, 张立强. 晶粒取向对微细加工磨削力作用机理及试验研究[J]. 机械工程学报, 2021, 57(5): 262-272.
[2] 尹敏轩, 朱涛, 杨冰, 徐京涛, 王超, 肖守讷. 基于可靠性的重载货车钩舌疲劳断裂寿命[J]. 机械工程学报, 2021, 57(4): 210-218.
[3] 马硕, 姜兴宇, 杨国哲, 刘伟军, 乔赫廷, 王子生. 废旧机床主轴剩余寿命评估模型[J]. 机械工程学报, 2021, 57(4): 219-226.
[4] 魏静, 姜东, 张爱强, 程浩. 时变位姿下行星齿轮传动系统动应力计算模型及其参数影响研究[J]. 机械工程学报, 2021, 57(21): 150-159.
[5] 赵丙峰, 廖鼎, 朱顺鹏, 谢里阳. 机械结构概率疲劳寿命预测研究进展[J]. 机械工程学报, 2021, 57(16): 173-184,197.
[6] 李兵兵, 郑一铭, 余伟炜, 陈旭. 核电管材奥氏体不锈钢热机械疲劳行为研究进展[J]. 机械工程学报, 2021, 57(16): 185-197.
[7] 潘骏, 张雯, 张利彬, 贺青川, 钱萍, 陈文华. 电连接器接触件振动可靠性试验评估[J]. 机械工程学报, 2021, 57(10): 257-266.
[8] 杨广雪, 李广全, 周君锋, 冯永华. 高速动车组牵引拉杆载荷特性研究[J]. 机械工程学报, 2020, 56(8): 200-206.
[9] 焦敬品, 常予, 李光海, 吴斌, 何存富. 铁磁性材料早期疲劳损伤磁混频检测方法[J]. 机械工程学报, 2020, 56(4): 25-34.
[10] 陈道云, 王斌杰, 肖乾, 李强, 孙守光. 高速列车转向架构架损伤、等效应力及寿命分布特性研究[J]. 机械工程学报, 2020, 56(22): 237-246.
[11] 张飞, 潘伟峰, 江献玉, 孙尔军. 基于反时限方法的抽水蓄能机组振动保护模型[J]. 机械工程学报, 2020, 56(18): 188-196.
[12] 张亚禹, 孙守光, 杨广雪, 李广全. 高速列车转向架构架载荷特征及疲劳损伤评估[J]. 机械工程学报, 2020, 56(10): 163-171.
[13] 李跃, 田艳红, 丛森, 张伟玮. PCB组装板多器件焊点疲劳寿命跨尺度有限元计算[J]. 机械工程学报, 2019, 55(6): 54-60.
[14] 李存海, 吴圣川, 刘宇轩. 样本信息聚集原理改进及其在铁路车辆结构疲劳评定中的应用[J]. 机械工程学报, 2019, 55(4): 42-53.
[15] 安琪, 赵华, 刘映安, 付茂海. 基于多轴准则的货车车体疲劳寿命分析方法[J]. 机械工程学报, 2019, 55(2): 64-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05060958号 中国机械工程学会版权所有,未经同意请勿转载
中国机械工程学会/北京市海淀区首体南路9号主语国际4号楼11层,邮编100048
0