Please wait a minute...

机械工程学报  2022, Vol. 58 Issue (4): 22-33    DOI: 10.3901/JME.2022.04.022
  仪器科学与技术 本期目录 | 过刊浏览 | 高级检索 |
基于改进群延迟估计的同步压缩变换及其在冲击类振动信号提取中的应用
贺雅1, 胡明辉1, 卢子元2, 明煊1, 贾彦飞2
1. 北京化工大学发动机健康监控及网络化教育部重点实验室 北京 100029;
2. 成都航利(集团)实业有限公司 成都 611936
Synchrosqueezing Transform Based on Improved Group Delay Estimation and Its Application in Extracting Impulse Vibration Signal
HE Ya1, HU Minghui1, LU Ziyuan2, MING Xuan1, JIA Yanfei2
1. Key Lab of Engine Health Monitoring-Control and Networking of Ministry of Education, Beijing University of Chemical Technology, Beijing 100029;
2. Hangli (Group) Industrial Co., Ltd, Chengdu, Chengdu 611936
全文: PDF(140253 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 旋转机械振动信号中的冲击特征通常代表着轴承损伤、齿轮损伤等常发故障的出现,为了准确提取信号中的冲击分量,提出一种基于改进群延迟估计的同步压缩变换时频分析方法。分析时间重分配同步压缩变换原型算法在处理实际强频变信号时的特性,发现其易导致明显的时频模糊问题。构建基于局部最大搜索算法的改进型经典群延迟估计方法,以克服TSST在分析强频变信号时带来的时频模糊问题,并在此基础上提出了群延迟自适应估计策略。形成一种基于改进群延迟估计的自适应同步压缩变换方法,在其基础上提出一种振动信号中脉冲特征提取方法。仿真信号和试验数据分析结果表明,该方法可较准确地提取出振动信号中的冲击特征,相较其他常用时频分析方法能够生成更为聚集的时频表示。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
贺雅
胡明辉
卢子元
明煊
贾彦飞
关键词 冲击振动提取时频分析时间重分配同步压缩变换群延迟估计    
Abstract:The impact features in the vibration signal of rotating machinery usually represent the occurrence of common faults such as bearing damage and gear damage. In order to accurately extract the impact component in the signal, a time-frequency analysis method based on improved time-reassignment synchrosqueezing transform(TSST) is proposed. Firstly, the characteristics of TSST prototype algorithm in dealing with actual strongly frequency varying signals are analysed, and it is found that it is easy to cause evident time-frequency ambiguity. Then, an improved group delay estimation method based on local maximum search algorithm is constructed to overcome the time-frequency ambiguity problem caused by TSST. On this basis, an adaptive group delay estimation strategy is proposed. Finally, an adaptive synchrosqueezing transform method based on improved group delay estimation is formed, and a pulse feature extraction method in vibration signal is developed. The results of simulation and experimental data show that the proposed method can extract impulse features of vibration signals more accurately, and generate a more concentrated time-frequency representation than other time-frequency analysis methods.
Key wordsimpulse vibration    extraction    TFA    TSST    group-delay estimation
收稿日期: 2021-09-15      出版日期: 2022-05-18
ZTFLH:  TH911  
  TH165  
基金资助:博士后创新人才支持计划资助项目(BX20180031)。
通讯作者: 胡明辉(通信作者),男,1990年出生,博士,副教授。主要研究方向为航空发动机故障诊断与振动抑制。E-mail:humh2008@163.com   
作者简介: 贺雅,女,1995年出生,博士研究生。主要研究方向为航空发动机转子系统故障诊断。E-mail:heya@mail.buct.edu.cn
引用本文:   
贺雅, 胡明辉, 卢子元, 明煊, 贾彦飞. 基于改进群延迟估计的同步压缩变换及其在冲击类振动信号提取中的应用[J]. 机械工程学报, 2022, 58(4): 22-33.
HE Ya, HU Minghui, LU Ziyuan, MING Xuan, JIA Yanfei. Synchrosqueezing Transform Based on Improved Group Delay Estimation and Its Application in Extracting Impulse Vibration Signal. Journal of Mechanical Engineering, 2022, 58(4): 22-33.
链接本文:  
http://qikan.cmes.org/jxgcxb/CN/10.3901/JME.2022.04.022      或      http://qikan.cmes.org/jxgcxb/CN/Y2022/V58/I4/22
[1] 秦海勤,张耀涛,徐可君.双转子-支承-机匣耦合系统碰摩振动响应分析及试验验证[J].机械工程学报,2019,55(19):75-83.QIN Haiqin,ZHANG Yaotao,XU Kejun. Rubbing vibration response theoretical analysis and experimental verification for a double rotor support casing system[J]. Journal of Mechanical Engineering,2019,55(19):75-83.
[2] 刘佳杭.基于振动分析的航空发动机转子系统故障诊断研究[D].天津:中国民航大学,2020.LIU Jiahang. Research on fault diagnosis of aeroengine rotor system based on vibration analysis[D]. Tianjin:Civil Aviation University of China,2020.
[3] 唐建蒙.基于压缩感知的旋转机械冲击型故障诊断方法研究[D].广州:华南理工大学,2019.TANG Jianmeng. A research for diagnosis method of rotary machinery impact fault signals based on compressive sensing[D]. Guangzhou:South China University of Technology,2019.
[4] 陈予恕,张华彪.航空发动机整机动力学研究进展与展望[J].航空学报,2011,32(8):1371-1391.CHEN Yushu,ZHANG Huabin. Review and prospect on the research of dynamics of complete aero-engine systems[J]. Acta Aeronautica et Astronautica Sinica,2011,32(8):1371-1391.
[5] 胡爱军,许莎,向玲,等.滚动轴承外圈多点故障特征分析[J].机械工程学报,2020,56(21):110-120.HU Aijun,XU Sha,XIANG Ling,et al. Characteristic analysis of multi-point faults on the outer race of rolling element bearing[J]. Journal of Mechanical Engineering,2020,56(21):110-120.
[6] QIN Y. A new family of model-based impulsive wavelets and their sparse representation for rolling bearing fault diagnosis[J]. IEEE Transactions on Industrial Electronics. 2018,65(3):2716-2726.
[7] 赵德尊,王天杨,褚福磊.基于自适应广义解调变换的滚动轴承时变非平稳故障特征提取[J].机械工程学报,2020,56(3):80-87.ZHAO Dezun,WANG Tianyang,CHU Fulei. Adaptive generalized demodulation transform based rolling bearing time-varying nonstationary fault feature extraction[J]. Journal of Mechanical Engineering,2020,56(3):80-87.
[8] HUANG N E,SHEN Z,LONG S R,et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. The Royal Society,1998,454:903-995.
[9] ZHENG J,PAN H,LIU T,et al. Extreme-point weighted mode decomposition[J]. Signal Process,2018,142:366-374.
[10] LIU H,HUANG W,WANG S,et al. Adaptive spectral kurtosis filtering based on Morlet wavelet and its application for signal transients detection[J]. Signal Process,2014,96:118-124.
[11] LI C,ZHANG S H,QIN Y,et al. A systematic review of deep transfer learning for machinery fault diagnosis[J]. Neurocomputing,2020,407:121-135.
[12] 陈雪峰,王诗彬,程礼.航空发动机快变信号的匹配同步压缩变换研究[J].机械工程学报,2019,55(13):13-22.CHEN Xuefeng,WANG Shibin,CHENG Li,et al. Matching synchrosqueezing transform for aero-engine's signals with fast varying instantaneous frequency[J]. Journal of Mechanical Engineering,2019,55(13):13-22.
[13] 俞坤,罗志涛,李鸿飞,等.广义参数化同步压缩变换及其在旋转机械振动信号中的应用[J].机械工程学报,2019,55(11):149-159.YU Kun,LUO Zhitao,LI Hongfei,et al. General parameterized synchrosqueezing transform and its application in rotating machinery vibration signal[J]. Journal of Mechanical Engineering,2019,55(11):149-159.
[14] DAUBECJIES I,LU J,WU H T,et al. Synchrosqueezed wavelet transforms:An empirical mode decomposition-like tool[J]. Applied Computer Harmonic Analysis,2011,30(2):243-261.
[15] OBERLIN T,MEIGNEN S,PERRIER V. Second-order synchrosqueezing transform or invertible reassignment?Towards ideal time-frequency representations[J]. IEEE Transactions on Signal Process,2015,63(5):1335-1344.
[16] PHAM D,MEIGNEN S. High-order synchrosqueezing transform for multicomponent signals analysis-with an application to gravitational-wave signal[J]. IEEE Transactions on Signal Process,2017,65(12):3168-3178.
[17] HE D,CAO H,WANG S,et al. Time-reassigned synchrosqueezing transform:The algorithm and its applications in mechanical signal processing[J]. Mechanical Systems and Signal Process,2019,117:255-279.
[18] YU G,LIN T,WANG Z,et al. Time-reassigned multisynchrosqueezing transform for bearing fault diagnosis of rotating machinery[J]. IEEE Transactions Industrial Electronics,2021,68(2):1486-1496.
[19] YU G, WANG Z,ZHAO P,et al. Local maximum synchrosqueezing transform:An energy-concentrated time-frequency analysis tool[J] Mechanical Systems and Signal Process,2019,117:537-552.
[20] HE Zhoujie,TU Xiaotong,BAO Wenjie,et al. Gaussian-modulated linear group delay model:Application to second-order time-reassigned synchrosqueezing transform[J]. Signal Processing,2020,167:107275.
[1] 苗宝权, 陈长征, 罗园庆, 赵思雨. 基于自适应增强差分积形态滤波器的滚动轴承故障特征提取方法[J]. 机械工程学报, 2021, 57(9): 78-88.
[2] 巫晓康, 赵欢, 唐敏杰, 丁汉. 面向动作识别的旋转投影变换关节特征骨架描述[J]. 机械工程学报, 2021, 57(5): 19-30.
[3] 陈道云, 肖乾, 孙守光, 牟明慧. 强耦合结构动载荷识别方法[J]. 机械工程学报, 2021, 57(4): 174-181.
[4] 谯自健, 束学道. 非对称势诱导随机共振增强机械重复瞬态提取[J]. 机械工程学报, 2021, 57(23): 160-168.
[5] 唐敏杰, 赵欢, 丁汉. 二进制点云局部特征描述子研究[J]. 机械工程学报, 2021, 57(2): 219-229.
[6] 贾俊, 胡晓松, 邓忠伟, 徐华池, 肖伟, 韩锋. 数据驱动的锂离子电池健康状态综合评分及异常电池筛选[J]. 机械工程学报, 2021, 57(14): 141-149,159.
[7] 赵学智, 叶邦彦, 陈统坚. 频率添加奇异值分解算法及其在故障特征提取中的应用[J]. 机械工程学报, 2021, 57(10): 10-20.
[8] 王志学, 刘献礼, 李茂月, LIANG S Y, 王力翚, 李玉强, 孟博洋. 切削加工颤振智能监控技术[J]. 机械工程学报, 2020, 56(24): 1-23.
[9] 张行, 崔灿, 廖宁生, 张仕民. 考虑流固耦合的管道机器人冲击环焊缝过程动力学建模与分析[J]. 机械工程学报, 2020, 56(23): 129-140.
[10] 吕凤天, 高海波, 李楠, 丁亮, 邓宗全, 刘光军. 基于单目视觉的松软地面星球车车轮滑转率估计[J]. 机械工程学报, 2020, 56(2): 77-85.
[11] 陈鲲, 茆志伟, 张进杰, 江志农. 基于和声搜索优化栈式自编码器的柴油发动机故障诊断[J]. 机械工程学报, 2020, 56(11): 132-140.
[12] 王华庆, 任帮月, 宋浏阳, 董方, 王梦阳. 基于终止准则改进K-SVD字典学习的稀疏表示特征增强方法[J]. 机械工程学报, 2019, 55(7): 35-43.
[13] 崔玲丽, 王鑫, 王华庆, 胥永刚, 张建宇. 基于改进开关卡尔曼滤波的轴承故障特征提取方法[J]. 机械工程学报, 2019, 55(7): 44-51.
[14] 郭莹莹, 赵学智, 上官文斌, 李伟光. 柔性椭圆轴承故障频率分析与CMWT-FH特征提取[J]. 机械工程学报, 2019, 55(23): 154-161.
[15] 何银水, 余卓骅, 李健, 马国红. 基于视觉特征的厚板机器人焊接焊缝轮廓的有效提取[J]. 机械工程学报, 2019, 55(17): 56-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05060958号 中国机械工程学会版权所有,未经同意请勿转载
中国机械工程学会/北京市海淀区首体南路9号主语国际4号楼11层,邮编100048
0