Please wait a minute...

中国机械工程  2022, Vol. 33 Issue (8): 929-942    DOI: 10.3969/j.issn.1004-132X.2022.08.007
  智能制造 本期目录 | 过刊浏览 | 高级检索 |
人机环境系统多领域行为过程建模与优化方法研究进展
董元发1,2, 张文厉1, 肖人彬3, 田启华1, 杜轩1,2
1. 三峡大学机械与动力学院,宜昌,443002;
2. 三峡大学智能制造创新技术中心,宜昌,443002;
3. 华中科技大学人工智能与自动化学院,武汉,430074
Research Progresses of Modeling and Optimization Methods for Multi Domain Behavior Processes of Human-Machine Environmental Systems
DONG Yuanfa1,2, ZHANG Wenli1, XIAO Renbin3, TIAN Qihua1, DU Xuan1,2
1. College of Mechanical & Power Engineering, China Three Gorges University, Yichang, Hubei, 443002;
2. Intelligent Manufacturing Innovation Technology Center, China Three Gorges University, Yichang, Hubei, 443002;
3. School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, 430074
全文: PDF(1781 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 目前智能技术自身在通用性、稳健性、安全性等方面并不成熟,智能交互产品极易因在意图表达、信息处理、决策逻辑、交互时序、动作强度等方面与用户行为模式的不匹配而产生“行为冲突”,人机环境系统多领域行为过程的统一建模与优化是实现智能交互产品行为特性调控和正向设计的关键。从如何表征、用什么表征、如何校验、如何优化四个维度系统地梳理了人机环境系统多领域行为过程表征模型、建模语言/工具、模型验证和行为过程优化等方面的研究进展,分析了目前该领域存在的问题和局限性,展望了未来的研究重点和发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董元发
张文厉
肖人彬
田启华
杜轩
关键词 智能交互产品人机环境系统多领域行为过程统一建模优化    
Abstract:Due to the immaturity of intelligent technology in universality, robustness and security, intelligent interactive products were prone to “behavior conflict” due to the mismatch with user behavior patterns in intention expression, information processing, decision logic, interaction timing and action intensity. Unified modeling and optimization of multi domain behavior processes of human-machine environmental systems were the key to realize behavior characteristic regulation and forward design of intelligent interactive products. This paper systematically reviewed the research progresses of multi domain behavior process representation model, modeling language and tool, model validation and behavior process optimization of human-machine environmental systems from four dimensions:how to represent, what to represent, how to verify and how to optimize. The existing problems and limitations in this field were analyzed, and the future research focus and development trend were prospected.
Key wordsintelligent interactive product    human-machine environmental system    multi-domain behavior process    unified modeling    optimization
收稿日期: 2021-06-21      出版日期: 2022-05-09
ZTFLH:  TG156  
基金资助:国家自然科学基金(52075292);水电机械设备设计与维护湖北省重点实验室开放基金(2020KJX05);三峡大学学位论文培优基金(2021SSPY043)
通讯作者: 肖人彬(通信作者),男,1965年出生,教授、博士研究生导师。研究方向为复杂系统建模与分析,群集智能、涌现计算等。出版专著6部,发表论文100余篇。E-mail:rbxiao@hust.edu.cn。     E-mail: rbxiao@hust.edu.cn。
作者简介: 董元发,男,1988年生,博士、副教授。研究方向为MBSE、人机共融和智能制造。发表论文30余篇。E-mail:dongyf@ctgu.edu.cn。
引用本文:   
董元发, 张文厉, 肖人彬, 田启华, 杜轩. 人机环境系统多领域行为过程建模与优化方法研究进展[J]. 中国机械工程, 2022, 33(8): 929-942.
DONG Yuanfa, ZHANG Wenli, XIAO Renbin, TIAN Qihua, DU Xuan. Research Progresses of Modeling and Optimization Methods for Multi Domain Behavior Processes of Human-Machine Environmental Systems. China Mechanical Engineering, 2022, 33(8): 929-942.
链接本文:  
http://qikan.cmes.org/zgjxgc/CN/10.3969/j.issn.1004-132X.2022.08.007      或      http://qikan.cmes.org/zgjxgc/CN/Y2022/V33/I8/929
[1] 周济, 周艳红, 王柏村, 等. 面向新一代智能制造的人-信息-物理系统(HCPS)[J]. Engineering, 2019, 5(4):71-97. ZHOU Ji, ZHOU Yanhong, WANG Baicun, et al. Human-information-physical System (HCPS) for the New Generation of Intelligent Manufacturing[J]. Engineering, 2019, 5(4):71-97.
[2] 程洪, 黄瑞, 邱静, 等. 人机智能技术及系统研究进展综述[J]. 智能系统学报, 2020, 15(2):386-398. CHENG Hong, HUANG Rui, QIU Jing, et al. A Survey of Recent Aduances in Human-Robot Intelligent Systems[J]. CAAI Transactions on Intelligent Systems, 2020, 15(2):386-398.
[3] RAHWAN L, CEBRIAN M, OBRADOVICH N, et al. Machine Behavior[J]. Nature, 2019, 568(7753):477-486.
[4] ZHOU Feng, JI Yangjian, JIAO Jianxin. Affective and Cognitive Design for Mass Personalization:Status and Prospect[J]. Journal of Intelligent Manufacturing, 2013, 24(5):1047-1069.
[5] ZHUANG Yueting, WU Fei, CHEN Chun, et al. Challenges and Opportunities:from Big Data to Knowledge in AI 2.0[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1):3-14.
[6] ZHENG Nanning, LIU Ziyi, REN Pengju, et al. Hybrid-augmented Intelligence:Collaboration and Cognition[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2):153-179.
[7] LTOH M, FLEMISCH F, ABBINK D. A Hierarchical Framework to Analyze Shared Control Conflicts between Human and Machine[J]. IFAC-PapersOnLine, 2016, 49(19):96-101.
[8] 张力, 邓志良, 王以群. 复杂人-机系统中人因失误因素辨识[J]. 人类工效学, 1996(4):28-30. ZHANG Li, DENG Zhiliang, WANG Yiqun. Identification of Human Error Factors in Complex Man-Machine Systems[J]. Ergonomics, 1996(4):28-30.
[9] 许录平, 谢维信. 人的因素及对人机系统的影响[J]. 电子科技, 1996(3):9-12. XU Luping, XIE Weixin. Human Factors and Their Influence on Man-Machine Systems[J]. Electronic Technology, 1996(3):9-12.
[10] 王泽申. 关于人机系统安全分析中人的因素的一些探讨[J]. 中国安全科学学报, 1997(2):29-33. WANG Zeshen. Some Discussions on the Human Factor in the Safety Analysis of Man-Machine Systems[J]. Chinese Safety Science Journal, 1997(2):29-33.
[11] 胡静, 李明. 人机交互系统中的情感化因素[J]. 福建电脑, 2009, 25(4):57-58. HU Jing, LI Ming. Emotional Factors in the Human-Computer Interaction System[J]. Fujian Computer, 2009, 25(4):57-58.
[12] 冯树民, 黄秋菊, 张宇, 等. 驾驶人“感知-决策-操控”行为模型[J]. 交通运输系统工程与信息, 2021, 21(1):41-47. FENG Shumin, HUANG Qiuju, ZHANG Yu, et al. Driver's “Perception-Decision-Manipulation” Behavior Model[J]. Transportation System Engineering and Information, 2021, 21(1):41-47.
[13] 黄秋菊, 冯树民, 张宇, 等. 自然驾驶工况下驾驶人脚操纵行为规律[J]. 哈尔滨工业大学学报, 2021, 53(3):11-17. HUANG Qiuju, FENG Shumin, ZHANG Yu, et al. Drivers' Foot Manipulation Behavior under Natural Driving Conditions[J]. Journal of Harbin Institute of Technology, 2021, 53(3):11-17.
[14] MOHAMMED A, WANG L. Brainwaves Driven Human-Robot Collaborative Assembly[J]. CIRP Annals:Manufacturing Technology, 2018, 67(1):13-16.
[15] LIU Hongyi, WANG Lihui. Human Motion Prediction for Human-Robot Collaboration[J]. Journal of Manufacturing Systems, 2017, 44(2):287-294.
[16] GAO Zhenhai. The Driver's Steering Feel Assessment Using EEG and EMG Signals[J]. NeuroQuantology, 2018, 16(2):6-13.
[17] MAINPRICE J, BERENSON D. Human-Robot Collaborative Manipulation Planning Using Early Prediction of Human Motion[C]//2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. Tokyo:IEEE, 2013:299-306.
[18] LIU Hongyi, WANG Lihui. Gesture Recognition for Human-Robot Collaboration:a Review[J]. International Journal of Industrial Ergonomics, 2018, 68:355-367.
[19] LIU Hongyi, WANG Lihui. Human Motion Prediction for Human-Robot Collaboration[J]. Journal of Manufacturing Systems, 2017, 44(2):287-294.
[20] 刘庭煜, 陆增, 孙毅锋, 等. 基于三维深度卷积神经网络的车间生产行为识别[J]. 计算机集成制造系统, 2020, 26(8):2143-2156. LIU Tingyu, LU Zeng, SUN Yifeng, et al. Workshop Production Behavior Recognition Based on Three-dimensional Deep Convolutional Neural Network[J]. Computer Integrated Manufacturing System, 2020, 26(8):2143-2156.
[21] ZHANG J, LIU H, CHANG Q, et al. Recurrent Neural Network for Motion Trajectory Prediction in Human-Robot Collaborative Assembly[J]. CIRP Annals:Manufacturing Technology, 2020, 69(1):9-12.
[22] 唐立军, 李贞辉, 袁兴宇, 等. 巡检机器人人机交互中的操作行为分析[J]. 现代制造工程, 2021(3):28-34. TANG Lijun, LI Zhenhui, YUAN Xingyu, et al. Operational Behavior Analysis in Human-Computer Interaction of Inspection Robots[J]. Modern Manufacturing Engineering, 2021(3):28-34.
[23] 郭海兵, 曲大义, 洪家乐, 等. 基于效用理论的车辆换道交互行为及决策模型[J]. 科学技术与工程, 2020, 20(29):12185-12190. GUO Haibing, QU Dayi, HONG Jiale, et al. Vehicle Lane Changing Interactive Behavior and Decision Model Based on Utility Theory[J]. Science Technology and Engineering, 2020, 20(29):12185-12190.
[24] 何思俊, 支锦亦, 杜洋, 等. 装备驾驶界面人机设计评价研究综述[J]. 机械设计与研究, 2019, 35(5):97-103. HE Sijun, ZHI Jinyi, DU Yang, et al. Review of Research on the Evaluation of Man-Machine Design of Equipment Driving Interface[J]. Mechanical Design and Research, 2019, 35(5):97-103.
[25] 王瑞, 董石羽, 肖江浩. 智能汽车界面设计的人机自然交互研究[J]. 机械设计, 2019, 36(2):132-136. WANG Rui, DONG Shiyu, XIAO Jianghao. Research on Human-Computer Natural Interaction in Smart Car Interface Design[J]. Mechanical Design, 2019, 36(2):132-136.
[26] LIN Yingzi. Toward Intelligent Human Machine Interactions[J]. Mechanical Engineering, 2017, 139(6):S4-S8.
[27] CHEN Yong, LIU Zelin, XIE Youbai. A Know-ledge-based Framework for Creative Conceptual Design of Multi-disciplinary Systems[J]. Computer-Aided Design, 2011, 44(2):146-153.
[28] YUAN Lin, LIU Yusheng, SUN Zhongfei, et al. A Hybrid Approach for the Automation of Functional Decomposition in Conceptual Design[J]. Journal of Engineering Design, 2016, 27(4/6):333-460.
[29] LIU Jun, CHEN Bin, XIE Youbai. An Improved Axiomatic Design Approach in Distributed Resource Environment, Part 1:Toward Functional Requirements to Design Parameters Transformation[J]. Procedia CIRP, 2016, 53:35-43.
[30] CHEN Bin, LIU Jun, XIE Youbai. An Improved Axiomatic Design Approach in Distributed Resource Environment, Part 2:Algorithm for Functional Unit Chain Set Generation[J]. Procedia CIRP, 2016, 53:44-49.
[31] 袁琳, 刘玉生. 基于SysML的概念设计功能建模方法[J]. 计算机集成制造系统, 2018, 24(1):164-177. YUAN Lin, LIU Yusheng. Functional Modeling Method of Conceptual Design Based on SysML[J]. Computer Integrated Manufacturing System, 2018, 24(1):164-177.
[32] 刘帅, 曹国忠, 朱玉宁, 等. 面向概念设计原理解达成度评价方法研究[J]. 机械设计与研究, 2018, 34(5):1-6. LIU Shuai, CAO Guozhong, ZHU Yuning, et al. Research on the Evaluation Method of Original Understanding Achievement for Conceptual Design[J]. Machine Design and Research, 2018, 34(5):1-6.
[33] 曹悦, 吴凌九, 秦绪佳, 等. 模型驱动复杂机电系统软件与物理并行概念设计[J]. 中国机械工程, 2021, 32(21):2532-2541. CAO Yue, WU Lingjiu, QIN Xujia, et al. Parallel Conceptual Design of Model-driven Complex Electromechanical System Software and Physics[J]. China Mechanical Engineering, 2021, 32(21):2532-2541.
[34] 王美焰. 机电产品行为特性及可持续概念设计方法研究[D]. 合肥:中国科学技术大学, 2011. WANG Meiyan. Research on Behavioral Chara-cteristics and Sustainable Conceptual Design Methods of Electromechanical Products[D]. Hefei:University of Science and Technology of China, 2011.
[35] GOEL A K, RUGABER S, VATTAM S. Structure, Behavior, and Function of Complex Systems:the Structure, Behavior, and Function Mod-eling Language[J]. Artificial Intelligence for En-gineering Design Analysis and Manufacturing, 2009, 23(1):23-35.
[36] ROY U, PRAMANIK N, SUDARSAN R, et al. Function-to-form Mapping:Model, Representation and Application in Design Synthesis[J]. Computer-Aided Design, 2001, 33(10):699-719.
[37] 刘振宇, 傅云, 谭建荣. 基于仿真组件的数字样机运动模型构建与重用[J]. 机械工程学报, 2009, 45(10):118-124. LIU Zhenyu, FU Yun, TAN Jianrong. Construction and Reuse of Digital Prototype Motion Model Based on Simulation Component[J]. Journal of Mechanical Engineering, 2009, 45(10):118-124.
[38] MEJIA-GUTIERREZ R, CARVAJAL-ARANGO R. Design Verification through Virtual Prototyping Techniques Based on Systems Engineering[J]. Research in Engineering Design, 2017, 28(4):477-494.
[39] 陈旭玲, 楼佩煌, 唐敦兵, 等. 机械产品概念设计BFBS混合映射方法[J]. 计算机集成制造系统, 2010, 16(7):1363-1370. CHEN Xuling, LOU Peihuang, TANG Dunbing, et al. BFBS Hybrid Mapping Method for Conceptual Design of Mechanical Products[J]. Computer Integrated Manufacturing System, 2010, 16(7):1363-1370.
[40] GU Chaochen, HU Jie, WU Kaijie, et al. Quantitative Behavior Knowledge Modeling for Functional Case Adaptation[J]. Research in Engineering Design, 2015, 26(4):209-326.
[41] 杨灿军, 陈鹰, 路甬祥. 人机一体化智能系统理论及应用研究探索[J]. 机械工程学报, 2000, 36(6):42-47. YANG Canjun, CHEN Ying, LU Yongxiang. Research on the Theory and Application of Human-Machine Integrated Intelligent System[J]. Journal of Mechanical Engineering, 2000, 36(6):42-47.
[42] 路甬祥, 陈鹰. 人机一体化系统科学体系和关键技术[J]. 机械工程学报, 1995, 31(1):1-7. LU Yongxiang, CHEN Ying. The Scientific System and Key Technologies of Man-Machine Integration System[J]. Journal of Mechanical Engineering, 1995, 31(1):1-7.
[43] 路甬祥, 陈鹰. 人机一体化系统与技术--21世纪机械科学的重要发展方向[J]. 机械工程学报, 1994, 30(5):1-7. LU Yongxiang, CHEN Ying. Human-Machine Integration System and Technology:an Important Development Direction of Mechanical Science in the 21st Century[J]. Journal of Mechanical Engineering, 1994, 30(5):1-7.
[44] 雷永林, 朱一凡, 谭跃进, 等. 模型驱动的复杂人机系统过程建模仿真方法[J]. 系统工程与电子技术, 2016, 38(1):223-231. LEI Yonglin, ZHU Yifan, TAN Yuejin, et al. Model-driven Process Modeling and Simulation Method for Complex Man-Machine Systems[J]. Systems Engineering and Electronic Technology, 2016, 38(1):223-231.
[45] TRAN H T, CHENG H, LIN X C, et al. The Relationship between Physical Human-exoskeleton Interaction and Dynamic Factors:Using a Learning Approach for Control Applications[J]. Science China Information Sciences, 2014, 57(12):1-13.
[46] DEGANI A. Modeling Human-Machine Systems:on Modes, Error, and Patterns of Interaction[D]. Atlanta:Georgia Institute of Technology, 1996.
[47] 孟庆强. 人机系统中人的传递函数研究[J]. 煤矿机械, 2013, 34(8):258-260. MENG Qingqiang. Research on Human Transfer Function in Human-Machine System[J]. Coal Mine Machinery, 2013, 34(8):258-260.
[48] BRAGINSKY M Y, TARAKANOV D V, TSAPKO S G, et al. Hierarchical Analytical and Simulation Modelling of Human-Machine Systems with Interference[C]//Journal of Physics:Conference Series. Tomsk:IOP Publishing, 2017:12-26.
[49] 牛可, 方卫宁, 郭北苑, 等. 复杂人机系统设计中认知工作分析理论、技术与应用研究进展[J]. 中国科学:技术科学, 2018, 48(6):596-615. NIU Ke, FANG Weining, GUO Beiyuan, et al. Research Progress of Cognitive Work Analysis Theory, Technology and Application in the Design of Complex Man-Machine System[J]. Science in China:Technological Sciences, 2018, 48(6):596-615.
[50] 安冬冬. 不确定环境下的人机物融合系统的建模与验证[D]. 上海:华东师范大学, 2020. AN Dongdong. Modeling and Verification of Human-Machine-Object Fusion System under Uncertain Environment[D]. Shanghai:East China Normal University, 2020.
[51] 方斌, 孙佰鑫, 程光, 等. 紧耦合式物理人机系统的交互研究综述[J]. 机械工程学报, 2021, 57(17):10-20. FANG Bin, SUN Baixin, CHENG Guang, et al. Overview of the Interaction Research of Tightly Coupled Physical Man-Machine Systems[J]. Journal of Mechanical Engineering, 2021, 57(17):10-20.
[52] 侯伯薇, 朱艳兰. SysML精粹[M]. 北京:机械工业出版社, 2014:1-11. HOU Bowei, ZHU Yanlan. The Essence of SysML[M]. Beijing:China Machine Press, 2014:1-11.
[53] 姜俊, 赵金超. 基于流程的作战任务规划作业体系SysML建模方法研究[J]. 军事运筹与系统工程, 2020, 34(4):60-67. JIANG Jun, ZHAO Jinchao. Research on SysML Modeling Method of Operational System for Operational Task Planning Based on Process[J]. Military Operations Research and Systems Engineering, 2020, 34(4):60-67.
[54] HECHT M. Use of SysML to Generate Failure Modes and Effects Analyses for Microgrid Control Systems[J]. Insight, 2020, 23(2):21-31.
[55] 陈斌. 基于MBSE的直升机航电系统设计方法研究[J]. 电子技术与软件工程, 2020(23):69-70. CHEN Bin. Research on the Design Method of Helicopter Avionics System Based on MBSE[J]. Electronic Technology and Software Engineering, 2020(23):69-70.
[56] ARTHUR H A M, GILBERTO S F M. Mapping SysML Diagrams into Bayesian Networks:a Systems Engineering Approach for Fault Diagnosis[J]. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B:Mechanical Engineering, 2020, 6(3):031003.
[57] 浦乐, 王西超, 杨艺. 基于MBSE与SysML的空空导弹系统架构建模研究[J]. 航空科学技术, 2020, 31(2):54-59. PU Le, WANG Xichao, YANG Yi. Research on Air-to-air Missile System Architecture Modeling Based on MBSE and SysML[J]. Aeronautical Science and Technology, 2020, 31(2):54-59.
[58] MUHAMMAD W, MUHAMMAD U S. Application of Model-based Systems Engineering in Small Satellite Conceptual Design:a SysML Approach[J]. IEEE Aerospace and Electronic Systems Ma-gazine, 2018, 33(4):24-34.
[59] 王保民, 陈波, 张世聪, 等. 基于SysML的动车组受电弓控制逻辑仿真研究[J]. 铁道机车车辆, 2020, 40(6):11-18. WANG Baomin, CHEN Bo, ZHANG Shicong, et al. SysML-based EMU Pantograph Control Logic Simulation Study[J]. Railway Locomotives and Rolling Stock, 2020, 40(6):11-18.
[60] 张贺, 魏强, 陈余军, 等. 基于SysML的通信卫星转发器系统设计[J]. 环境技术, 2019, 37(2):106-112. ZHANG He, WEI Qiang, CHEN Yujun, et al. Communication Satellite Transponder System Design Based on SysML[J]. Environmental Technology, 2019, 37(2):106-112.
[61] 曹悦, 刘玉生, 赵建军, 等. 基于SysML的复杂机电系统设计模型形式化扩展与验证[J]. 计算机辅助设计与图形学学报, 2019, 31(12):2166-2176. CAO Yue, LIU Yusheng, ZHAO Jianjun, et al. Formal Extension and Verification of Complex Electromechanical System Design Model Based on SysML[J]. Journal of Computer Aided Design and Graphics, 2019, 31(12):2166-2176.
[62] 刘玉生, 袁文强, 樊红日, 等. 基于SysML的模型驱动复杂产品设计的信息集成框架研究[J]. 中国机械工程, 2012, 23(12):1438-1445. LIU Yusheng, YUAN Wenqiang, FAN Hongri, et al. Research on the Information Integration Framework of Model-driven Complex Product Design Based on SysML[J]. China Mechanical Engineering, 2012, 23(12):1438-1445.
[63] CAO Yue, LIU Yusheng, FAN Hongri, et al. SysML-based Uniform Behavior Modeling and Automated Mapping of Design and Simulation Model for Complex Mechatronics[J]. Computer-Aided Design, 2013, 45(3):764-776.
[64] KARNOPP D C, MARGOLIS D L, ROSENBERG R C. System Dynamics:Modeling and Simulation of Mechatronic Systems[M]. New York:Wiley, 2000.
[65] CHHABRA R, EMAMI M R. Holistic System Modeling in Mechatronics[J]. Mechatronics, 2010, 21(1):166-175.
[66] MESHRAM R V, KHADE S V, WAGH S R, et al. Bond Graph Approach for Port-controlled Hamiltonian Modeling for SST[J]. Electric Power Systems Research, 2018, 158:105-114.
[67] 王中双, 刘德刚. 基于键合图的多能域耦合系统自动化建模与仿真[J]. 机械设计与制造, 2010(8):85-87. WANG Zhongshuang, LIU Degang. Multi-energy Domain Coupling System Automation Modeling and Simulation Based on Bond Graphs[J]. Mechanical Design and Manufacturing, 2010(8):85-87.
[68] 王艾伦, 刘云. 基于键合图的复杂多能域耦合系统相似理论与方法研究[J]. 中国机械工程, 2009, 20(7):773-780. WANG Ailun, LIU Yun. Research on Similarity Theory and Method of Complex Multi-energy Domain Coupling System Based on Bond Graph[J]. China Mechanical Engineering, 2009, 20(7):773-780.
[69] 梁岗, 程天聪, 王桂昇. 小车-吊重-桥机主梁耦合系统键合图建模及动力学分析[J]. 上海海事大学学报, 2020, 41(2):110-116. LIANG Gang, CHENG Tiancong, WANG Gui-sheng. Modeling and Dynamic Analysis of the Bond Graph of the Trolley-Lifting-Bridge Crane Coupling System[J]. Journal of Shanghai Maritime University, 2020, 41(2):110-116.
[70] 郁明, 李梦昕. 基于键合图的非线性机电系统故障诊断方法研究[J]. 电工技术, 2018(19):12-15. YU Ming, LI Mengxin. Research on Fault Diagnosis Method of Nonlinear Electromechanical System Based on Bond Graph[J]. Electrical Engineering Technology, 2018(19):12-15.
[71] 王芳, 帕孜来·马合木提, 张宝伟. 基于键合图的鲁棒故障诊断及容错控制[J]. 电测与仪表, 2019, 56(3):124-128. WANG Fang, PAZILAI Mahemuti, ZHANG Baowei. Robust Fault Diagnosis and Fault-tolerant Control Based on Bond Graphs[J]. Electrical Measurement and Instrumentation, 2019, 56(3):124-128.
[72] MKADARA G, MARE J, PAULMANN G. Methodology for Model Architecting and Failure Simulation Supported by Bond-graphs:Application to Helicopter Axial Piston Pump[J]. Sustainability, 2021, 13(4):1-20.
[73] 赵佳彬, 帕孜来·马合木提. 基于键合图的不确定性混杂系统故障诊断[J]. 电测与仪表, 2021, 58(8):166-171. ZHAO Jiabin, PAZILAI Mahemuti. Uncertain Hybrid System Fault Diagnosis Based on Bond Graphs[J]. Electrical Measurement and Instrumentation, 2021, 58(8):166-171.
[74] ARAZ M, ERDEN Z. Behavioural Representation and Simulation of Design Concepts for Systematic Conceptual Design of Mechatronic Systems using Petri Nets[J]. International Journal of Production Research, 2014, 52(2):563-583.
[75] 赵芮凯, 张建辉, 王学瑞, 等. 基于Petri网和TRIZ的复杂技术系统多冲突问题求解[J]. 机械设计, 2020, 37(6):29-37. ZHAO Ruikai, ZHANG Jianhui, WANG Xuerui, et al. Solving Multi-conflict Problems of Complex Technical Systems Based on Petri Nets and TRIZ[J]. Mechanical Design, 2020, 37(6):29-37.
[76] 李晔, 王映辉, 于振华. 信息物理融合系统的面向对象Petri网建模[J]. 西安电子科技大学学报, 2014, 41(2):165-171. LI Ye, WANG Yinghui, YU Zhenhua. Object-oriented Petri Net Modeling of Cyber-physical Fusion System[J]. Journal of Xidian University, 2014, 41(2):165-171.
[77] 崔文岩, 孟相如. 基于层次Petri网的信息物理融合系统安全博弈建模[J]. 计算机应用研究, 2017, 34(8):2439-2442. CUI Wenyan, MENG Xiangru. Cyber-physical Fusion System Security Game Modeling Based on Hierarchical Petri Nets[J]. Application Research of Computers, 2017, 34(8):2439-2442.
[78] 余嘉伟. 基于Petri网的信息物理融合系统建模与分析[D]. 杭州:杭州电子科技大学, 2020. YU Jiawei. Modeling and Analysis of Cyber-physical Fusion System Based on Petri Net[D]. Hangzhou:Hangzhou Dianzi University, 2020.
[79] 王璇, 牛卫飞, 肖长青. 基于Petri网电梯导轨检测机器人任务执行系统设计[J]. 自动化与仪器仪表, 2019(9):15-19. WANG Xuan, NIU Weifei, XIAO Changqing. Design of Task Execution System for Elevator Rail Inspection Robot Based on Petri Net[J]. Automation and Instrumentation, 2019(9):15-19.
[80] 刘博, 李蜀瑜. 基于NuSMV的AADL行为模型验证的探究[J]. 计算机技术与发展, 2012, 22(2):110-113. LIU Bo, LI Shuyu. Research on NuSMV-based AADL Behavior Model Verification[J]. Computer Technology and Development, 2012, 22(2):110-113.
[81] 周玉平. 基于UML-NuSMV模型的列控系统需求阶段的安全分析[D]. 北京:北京交通大学, 2015. ZHOU Yuping. Safety Analysis of Train Control System in the Demand Stage Based on UML-NuSMV Model[D]. Beijing:Beijing Jiaotong University, 2015.
[82] 李宛倩, 胡军, 陈松, 等. 面向SysML模型的安全性分析与验证方法[J]. 计算机科学, 2019, 46(11):100-108. LI Wanqian, HU Jun, CHEN Song, et al. Security Analysis and Verification Method for SysML Model[J]. Computer Science, 2019, 46(11):100-108.
[83] 邓刘梦, 葛晓瑜, 宛伟健. 基于NuSMV的SysML模型形式化验证[J]. 计算机技术与发展, 2019, 29(10):153-156. DENG Liumeng, GE Xiaoyu, WAN Weijian. Formal Verification of SysML Model Based on NuSMV[J]. Computer Technology and Development, 2019, 29(10):153-156.
[84] 柯文俊, 陈静, 江山. 基于Petri网模型的系统仿真验证方法[J]. 系统工程与电子技术, 2017, 39(4):924-930. KE Wenjun, CHEN Jing, JIANG Shan. System Simulation and Verification Method Based on Petri Net Model[J]. Systems Engineering and Electronics, 2017, 39(4):924-930.
[85] HUANG E, MCGINNIS L F, MITCHELL S W. Verifying SysML Activity Diagrams Using Formal Transformation to Petri Nets[J]. Systems Engineering, 2020, 23(1):118-135.
[86] 张琛, 段振华, 田聪, 等. 分布式软件系统交互行为建模、验证与测试[J]. 计算机研究与发展, 2015, 52(7):1604-1619. ZHANG Chen, DUAN Zhenhua, TIAN Cong, et al. Interactive Behavior Modeling, Verification and Testing of Distributed Software Systems[J]. Computer Research and Development, 2015, 52(7):1604-1619.
[87] 杨培林, 刘青, 樊娟妮, 等. 机电系统的概率行为树建模及可靠性评价[J]. 中国机械工程, 2020, 31(14):1639-1646. YANG Peilin, LIU Qing, FAN Juanni, et al. Probabilistic Behavior Tree Modeling and Reliability Evaluation of Electromechanical Systems[J]. China Mechanical Engineering, 2020, 31(14):1639-1646.
[88] 王春晓, 骆伟超, 刘日良, 等. 基于Modelica的数控机床多领域建模与虚拟调试[J]. 组合机床与自动化加工技术, 2018(10):102-105. WANG Chunxiao, LUO Weichao, LIU Riliang, et al. Multi-domain Modeling and Virtual Debugging of CNC Machine Tools Based on Modelica[J]. Modular Machine Tool and Automatic Manufacturing Technology, 2018(10):102-105.
[89] 宋研, 邢涛, 巩朝阳. 基于Modelica的载人航天器多学科集成建模仿真[J]. 载人航天, 2019, 25(3):397-402. SONG Yan, XING Tao, GONG Chaoyang. Multidisciplinary Integrated Modeling and Simulation of Manned Spacecraft Based on Modelica[J]. Manned Spaceflight, 2019, 25(3):397-402.
[90] OHTOMI K. Kansei Modeling for Delight Design Based on 1DCAE Concept[C]//Proceedings of the 11th International Modelica Conference. Versailles, 2015:811-815.
[91] 张政. 基于SysML和Modelica的多领域设计和仿真建模集成[D]. 杭州:浙江大学, 2017. ZHANG Zheng. Multi-domain Design and Simulation Modeling Integration Based on SysML and Modelica[D]. Hangzhou:Zhejiang University, 2017.
[92] 周书华, 曹悦, 张政, 等. 基于SysML和Modelica的复杂机电产品系统设计与仿真集成[J]. 计算机辅助设计与图形学学报, 2018, 30(4):728-738. ZHOU Shuhua, CAO Yue, ZHANG Zheng, et al. System Design and Simulation Integration of Complex Electromechanical Products Based on SysML and Modelica[J]. Journal of Computer Aided Design and Graphics, 2018, 30(4):728-738.
[93] FU Chao, LIU Jihong, YU Hongyan, et al. A Visual Transformation Method of SysML Model to Modelica Model[J]. Journal of Physics:Conference Series, 2020, 1684(1):18-20.
[94] 黄培德. VR环境下基于虚拟手操作的装配仿真技术研究[D]. 武汉:武汉理工大学, 2019. HUANG Peide. Research on Assembly Simulation Technology Based on Virtual Hand Operation in VR Environment[D]. Wuhan:Wuhan University of Technology, 2019.
[95] 李经纬. 基于增强现实技术的虚拟汽车展示系统设计与实现[D]. 广州:华南理工大学, 2018. LI Jingwei. Design and Implementation of Virtual Car Display System Based on Augmented Reality Technology[D]. Guangzhou:South China University of Technology, 2018.
[96] 马丹. 基于用户体验的虚拟现实交互设计应用研究[J]. 传播力研究, 2018, 2(23):222. MA Dan. Research on the Application of Virtual Reality Interaction Design Based on User Experi-ence[J]. Research on Communication Power, 2018, 2(23):222.
[97] 张静. 基于用户体验的虚拟现实交互设计研究[D]. 武汉:华中科技大学, 2019. ZHANG Jing. Research on Virtual Reality Interaction Design Based on User Experience[D]. Wuhan:Huazhong University of Science and Techno-logy, 2019.
[98] OKUDA H, HAYAKAWA S, SUZUKI T, et al. Parameter Design of Switched Assist Controller for Man-Machine Cooperative System with Human Behavior Model Based on Hybrid System[J]. Electrical engineering in Japan, 2011, 177(1):55-64.
[99] KOBAYASHI Y, ONISHI M, HOSOE S, et al. Multi-tasking Arbitration and Behaviour Design for Human-interactive Robots[J]. International Journal of Systems Science, 2013, 44(5):795-811.
[100] 王亮, 卢永锦. 引用预见信息的人机耦合优化方法[J]. 北京航空航天大学学报, 2008, 34(4):361-364. WANG Liang, LU Yongjin. Man-Machine Coupling Optimization Method Using Foresight Information[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(4):361-364.
[101] 王朝晖, 陈恳, 朱心雄. 一种虚拟人作业行为的自主优化模型[J]. 软件学报, 2012, 23(9):2358-2373. WANG Zhaohui, CHEN Ken, ZHU Xinxiong. An Autonomous Optimization Model of Virtual Humans' Operational Behaviors[J]. Journal of Software, 2012, 23(9):2358-2373.
[102] SUN H C, HOUSSIN R, GARDONI M, et al. Integration of User Behaviour and Product Behaviour during the Design Phase:Software for Behavioural Design Approach[J]. International Journal of Industrial Ergonomics, 2013, 43(1):100-114.
[103] 刘世豪, 杜彦斌, 郭志忠. 基于人机工程学的数控机床耦合仿生优化设计方法研究进展[J]. 河北科技大学学报, 2015, 36(3):232-239. LIU Shihao, DU Yanbin, GUO Zhizhong. Research Progress of Ergonomically Coupled Bionic Optimization Design Method for CNC Machine Tools[J]. Journal of Hebei University of Science and Technology, 2015, 36(3):232-239.
[104] HUANG R, CHENG H, CHEN Q, et al. Interactive Learning for Sensitivity Factors of a Human-powered Augmentation Lower Exoskeleton[C]//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS). Hamburg:IEEE, 2015:6409-6415.
[105] MYUNGHEE K, DING Y, MALCOLM P, et al. Human-in-the-loop Bayesian Optimization of Wearable Device Parameters[J]. PLoS One, 2017, 12(9):e0184054.
[106] 张俊磊, 檀润华, 李辉. 基于拓展物质-场分析法的人机系统设计研究[J]. 工业技术经济, 2019, 38(4):29-36. ZHANG Junlei, TAN Runhua, LI Hui. Research on Man-Machine System Design Based on Extended Material-field Analysis Method[J]. Industrial Technology Economics, 2019, 38(4):29-36.
[107] 李敬业, 高学山, 高锐, 等. 人机共存环境下巡检机器人自主移动与避障方法[J]. 兵工自动化, 2020, 39(7):83-88. LI Jingye, GAO Xueshan, GAO Rui, et al. Autonomous Movement and Obstacle Avoidance Method of Inspection Robot in Human-Machine Coexistence Environment[J]. Ordnance Industry Automation, 2020, 39(7):83-88.
[108] 黄玲, 郭亨聪, 张荣辉, 等. 人机混驾环境下基于LSTM的无人驾驶车辆换道行为模型[J]. 中国公路学报, 2020, 33(7):156-166. HUANG Ling, GUO Hengcong, ZHANG Ronghui, et al. LSTM-based Lane-changing Behavior Model of Unmanned Vehicles in Human-Machine Hybrid Driving Environment[J]. Chinese Journal of Highway and Transport, 2020, 33(7):156-166.
[109] 姚湘, 郭雨晴, 李萌. 用户行为分析视角下的产品人机优化设计[J]. 包装工程, 2020, 41(18):90-100. YAO Xiang, GUO Yuqing, LI Meng. Product Man-Machine Optimization Design from the Perspective of User Behavior Analysis[J]. Packaging Engineering, 2020, 41(18):90-100.
[110] 王文东, 肖孟涵, 孔德智, 等. 基于人机耦合模型的上肢康复外骨骼闭环PD迭代控制方法[J]. 机械工程学报, 2021, 57(21):11-21. WANG Wendong, XIAO Menghan, KONG Dezhi, et al. A Closed-loop PD Iterative Control Method for Upper Limb Rehabilitation Exoskeleton Based on a Human-Machine Coupling Model[J]. Journal of Mechanical Engineering, 2021, 57(21):11-21.
[1] 李好, 徐志玲, 徐勇, 赵有为. 基于局部搜索NSGA-Ⅱ算法的机械产品分组选择装配方法[J]. 中国机械工程, 2022, 33(9): 1127-1133.
[2] 曾繁琦, 袁晓静, 王旭平, 张泽, 刘小方. 基于荷电状态惩罚函数的能量管理策略优化方法[J]. 中国机械工程, 2022, 33(7): 852-857,871.
[3] 曾寿金, 吴启锐, 韦铁平, 叶建华, 徐一丹. 选区激光熔化医用316L多孔结构的多目标工艺优化[J]. 中国机械工程, 2022, 33(6): 718-726.
[4] 吕黎曙, 邓朝晖, 刘涛, 万林林. 面向清洁生产的磨削工艺方案多层多目标优化模型及应用[J]. 中国机械工程, 2022, 33(5): 589-599.
[5] 林景亮, 黄运保, 李海艳, 周胜, 黄泽英. 基于深度代理模型的叉车臂架液压系统设计优化[J]. 中国机械工程, 2022, 33(3): 290-298.
[6] 高晟耀, 郭彭, 周奇郑. 局域共振型隔振系统的低频振动特性分析[J]. 中国机械工程, 2022, 33(3): 310-317,347.
[7] 贺俊杰, 张洁, 张朋, 汪俊亮, 郑鹏, 王明. 基于长短期记忆近端策略优化强化学习的等效并行机在线调度方法[J]. 中国机械工程, 2022, 33(3): 329-338.
[8] 邢青松, 梁闯, 梁学栋. 工序关联下考虑主体心理感知的复杂产品设计变更决策优化[J]. 中国机械工程, 2022, 33(3): 366-377.
[9] 唐荣江, 左迎香, 李申芳, 陆增俊, 许恩永, 毕道坤. 基于流场调控的商用车动力舱多目标优化[J]. 中国机械工程, 2022, 33(2): 234-242.
[10] 胡一明, 李以农, 郑玲. 基于作动器非线性特性的电磁主动悬架混合控制[J]. 中国机械工程, 2022, 33(2): 134-142.
[11] 甄冬, 李堃, 刘晓昂, 张佳琪. 非线性能量阱对汽车车身垂向振动的抑制效果[J]. 中国机械工程, 2022, 33(1): 24-33.
[12] 吴红安, 吕勇, 易灿灿, 袁锐. 窗口伸缩优化的同步压缩算法及其在变转速工况瞬时频率估计上的应用[J]. 中国机械工程, 2022, 33(1): 34-44.
[13] 邹裕吉, 宋豫川, 王馨坤, 王毅. 自动导向小车与加工设备多目标集成调度的聚类遗传算法[J]. 中国机械工程, 2022, 33(1): 97-108.
[14] 严升, 张润锋, 杨绍琼, 牛文栋, 张宇航, 李保玉. 水下滑翔机纵垂面变浮力过程建模与控制优化[J]. 中国机械工程, 2022, 33(1): 109-117.
[15] 高建平, 余佳衡, 孟垚, 郗建国. 电动车辆控制参数自动优化标定系统的研究及验证[J]. 中国机械工程, 2022, 33(1): 118-125.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05060958号 中国机械工程学会版权所有,未经同意请勿转载
中国机械工程学会/北京市海淀区首体南路9号主语国际4号楼11层,邮编100048
0