Please wait a minute...

机械工程学报  2022, Vol. 58 Issue (5): 69-77    DOI: 10.3901/JME.2022.05.69
  机器人及机构学 本期目录 | 过刊浏览 | 高级检索 |
家庭服务机器人手眼协调系统设计
田蔚瀚1, 罗亚哲1, 李逸飞1, 陈殿生1,2
1. 北京航空航天大学机械工程及自动化学院 北京 100191;
2. 北京航空航天大学北京生物医学工程高精尖中心 北京 100191
Design of Hand-eye Coordination System for Home Service Robot
TIAN Yu-han1, LUO Ya-zhe1, LI Yi-fei1, CHEN Dian-sheng1,2
1. School of Mechanical Engineering and Automation, Beihang University, Beijing 100191;
2. Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191
全文: PDF(785 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 针对目前智能家庭场景下,家居服务机器人对不同物品位姿的识别准确度与操作性差等问题,进行机器人手眼协调识别技术与物品灵巧操作规划方法的研究,提出了视觉前馈目标定位与视觉反馈位姿匹配相结合的识别与多位姿抓取方法。首先,基于SSD深度神经网络模型识别待抓取物品,并进行三维测定,以得到物品粗略坐标位置;其次,根据所得三维坐标预设深度相机与物品的相对位姿,采集物品与障碍物的深度信息,并基于Linemod算法与内置三维模型进行位姿匹配,完成对物品精确位姿的测定;最后,依据所得物品与障碍物的位置与姿态,规范臂手系统的抓取位姿,实现灵巧抓取物品。由以上原理,设计手眼协调测试实验进行不同桌面高度的物品抓取成功率与抓取误差测试,实验抓取总成功率高,且误差满足实际精度要求;该研究有利于提高家居服务机器人物品操作的灵巧性与适应性,对于家居服务机器人产业的发展具有重要意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
田蔚瀚
罗亚哲
李逸飞
陈殿生
关键词 服务机器人手眼协调物品抓取位姿识别    
Abstract:Based on the needs of item identification and operation in current smart home, and in view of the poor dexterity and accuracy of different poses of objects in existing household service robot, the research on robot hand-eye coordination recognition technology and item dexterous operation planning method are studied. In this paper, a recognition and multi-pose grasping method based on visual feedforward to locate three-dimensional position of target and visual feedback to match target pose is proposed.Firstly, SSD depth neural network model is used to identified items, and the three-dimensional position is carried out as the rough coordinate of the target. Then, the relative coordinate of the depth camera and the object is preset according to the obtained three-dimensional coordinates, and the depth information of the object and the obstacle is collected. At the same time, the pose matching is executed by comparing the built-in three-dimensional model with the accurate object by means of Linemod algorithm.Finally, according to the position and posture of the obtained objects and obstacles, the grasping posture of the arm control system is standardized to achieve the dexterous grasping of objects. From the above principles, Design hand-eye control experiments of tables at different heights to test success rate and grasping error by standardizing the position and process of item grabbing. As a result, there is a high successful rate, and the root mean square errors of grasping in three orientations are less than 0.006m. Therefore, it is applicable to the grasping and other operations of cube, column, sphere and other items; It is of great significance to the development of home service robot industry.
Key wordshome service robot    hand-eye coordination    pose recognition    object grasping
收稿日期: 2021-03-05      出版日期: 2022-04-28
ZTFLH:  TP242  
基金资助:国家重点研发计划资助项目(2018YFB1307103)。
通讯作者: 陈殿生(通信作者),男,1969年出生,博士,教授,博士研究生导师。主要研究方向为服务机器人、软体机器人。E-mail:chends@163.com     E-mail: chends@163.com
作者简介: 田蔚瀚,男,1994年出生。主要研究方向为服务机器人。E-mail:tianweihan@buaa.edu.cn
引用本文:   
田蔚瀚, 罗亚哲, 李逸飞, 陈殿生. 家庭服务机器人手眼协调系统设计[J]. 机械工程学报, 2022, 58(5): 69-77.
TIAN Yu-han, LUO Ya-zhe, LI Yi-fei, CHEN Dian-sheng. Design of Hand-eye Coordination System for Home Service Robot. Journal of Mechanical Engineering, 2022, 58(5): 69-77.
链接本文:  
http://qikan.cmes.org/jxgcxb/CN/10.3901/JME.2022.05.69      或      http://qikan.cmes.org/jxgcxb/CN/Y2022/V58/I5/69
[1] Executive Summary Services Robots 2020[OL].[2020-10-08].https://ifr.org/free-downloads/.
[2] EA AFFUM,AGYEMAN-PREMPEH K,ADUMATTAC,et al.Smart home energy management system based on the Internet of things (Io T)[J].International Journal of Advanced Computer Science and Applications (IJACSA),2021,12(2):1.
[3] CHOI W,KIM J,LEE S,et al.Smart home and internet of things:A bibliometic study[J].Journal of Cleaner Production,2021(1):301.
[4] LI X,ZHONG J,KAMRUZZAMAN M M.Complicated robot activity recognition by quality-aware deep reinforcement learning[J].Future Generation Computer Systems,2021,117:1.
[5] KIM U,KIM J.A stabilized feedback episodic memory (SF-EM) and home service provision framework for robot and Io T collaboration[J].IEEE Transactions on Cybernetics,2020,50(5):1.
[6] 赵雅婷,赵韩,梁昌勇,等.养老服务机器人现状及其发展建议[J].机械工程学报,2019,55(23):13-24.ZHAO Yating,ZHAO Han,LIANG Changyong,et al.Current situation and development suggestions of old-age service robot[J].Journal of Mechanical Engineering,2019,55(23):13-24.
[7] 祁若龙,张珂,周维佳,等.机械臂高斯运动轨迹规划操作成功概率预估计方法[J].机械工程学报,2019,55(1):54-63.QI Ruolong,ZHANG Ke,ZHOU Weijia,et al.Trajectory planning and success probability estimation of operation for Gaussian motion manipulators[J].Journal of Mechanical Engineering,2019,55(1):54-63.
[8] CAO Z,YIN L,FU Y.Vision-based stabilization of nonholonomic mobile robots by integrating sliding-mode control and adaptive approach[J].Chinese Journal of Mechanical Engineering,2013,26(1):21-28.
[9] 杨扬.基于机器视觉的服务机器人智能抓取研究[D].上海:上海交通大学,2014.YANG Yang.Study on the machine vision based intelligent grasping for service robot[D].Shanghai:Shanghai Jiao Tong University,2014.
[10] BESL P,MCKAY N.Method for registration of 3-Dshapes[C]//Robotics-DL tentative.International Society for Optics and Photonics,1992:586-606.
[11] HINTERSTOISSER S,HOLZER S,CAGNIART C,et al.Multimodal templates for real-time detection of texture-less objects in heavily cluttered scenes[C]//IEEEInternational Conference on Computer Vision.IEEE,2012:858-865.
[12] SU H,MAJI S,KALOGERAKIS E,et al.Multi-view convolutional neural networks for 3D shape recognition[J].ICCV,2015(1):945-953.
[13] QI C,SU H,MO K,et al.Point Net:Deep learning on point sets for 3D classification and segmentation[J].2017,16:1.
[14] QI C,YI L,SU H,et al.Point Net++:Deep hierarchical feature learning on point sets in a metric space[J].2017,6:1.
[15] LIU Y,FAN B,MENG G.,et al.Dense Point:Learning densely contextual representation for efficient point cloud processing[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV).IEEE,2020.
[16] WU W,QI Z,FUXIN L.Point Conv:Deep convolutional networks on 3D point clouds[C]//2019 IEEE/CVFConference on Computer Vision and Pattern Recognition (CVPR).IEEE,2020.
[17] 卢冠男.基于机器视觉的工业机器人抓取系统的研究[D].合肥:合肥工业大学,2017.LU Guannan.Research on industrial robot crawling system based on machine vision[D].Hefei:Hefei University of Technology,2017.
[18] ZHANG H,WANG F,WANG J,et al.Robot grasping method optimization using improved deep deterministic policy gradient algorithm of deep reinforcement learning[J].The Review of Scientific Instruments,2021,92(2):1.
[19] XU L,ZHOU Z,WANG C.An robot vision grasping network based on inception-lite[J].Journal of Physics:Conference Series,2021,1748(2):1.
[20] LIU W,ANGUELOV D,ERHAN D,et al.SSD:Single shot Multi Box detector[C]//European Conference on Computer Vision.Springer,Cham,2016:21-37.
[21] HINTERSTOISSER S,LEPETIT V,ILIC S,et al.Model based training,detection and pose estimation of texture-less 3D objects in heavily cluttered scenes[C]//Asian Conference on Computer Vision.Springer,Berlin,Heidelberg,2012:548-562.
[22] HINTERSTOISSER S,CAGNIART C,ILIC S,et al.Gradient response maps for real-time detection of textureless objects[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2012,34(5):876-888.
[1] 张文, 丁雨林, 陈咏华, 孙振国. 圆柱形钢制构件表面爬壁机器人姿态估计方法[J]. 机械工程学报, 2022, 58(5): 1-7.
[2] 刘逸群, 陆培栋, 张志鹏, 王剑锋, 张京明, 丁亮, 高海波. 松软地质上机器人足-地动力学建模与试验[J]. 机械工程学报, 2022, 58(5): 8-17.
[3] 赵智远, 赵京东, 赵亮亮, 杨晓航, 刘宏. 求解SSRMS构型空间机械臂逆运动学的方法[J]. 机械工程学报, 2022, 58(3): 21-35.
[4] 李洋, 朱立爽, 刘今越, 郭士杰. 基于动力学模型辨识的全臂柔顺控制[J]. 机械工程学报, 2022, 58(3): 45-54.
[5] 李双, 李艳文, 赵美欣, 陈子明, 朱为国. 一种并联下肢康复机构的综合与分析[J]. 机械工程学报, 2022, 58(3): 55-64.
[6] 刘超, 谭稀岑, 姚燕安, 付志洋. 一种新型可变形轮腿式机器人的设计与分析[J]. 机械工程学报, 2022, 58(3): 65-74.
[7] 曾晨东, 艾海平, 陈力. 空间机械臂在轨插、拔孔操作力/位姿阻抗控制[J]. 机械工程学报, 2022, 58(3): 84-94.
[8] 张永顺, 纪璇, 刘旭, 刘冠喜, 刘振虎. 磁驱动双半球胶囊机器人滚动动态性能研究[J]. 机械工程学报, 2022, 58(1): 10-18.
[9] 曾令城, 李明富, 杨真真, 罗威. 基于先验速度修正的工业机器人曲面跟踪柔顺控制[J]. 机械工程学报, 2022, 58(1): 41-51.
[10] 刘云平, 蒋长胜, 张婷婷, 赵中原, 邓志良. 考虑内部避碰的多无人机有限时间环形编队控制[J]. 机械工程学报, 2022, 58(1): 61-68.
[11] 罗阿妮, 刘贺平, 赖潇亮. 图解张拉整体基本单元稳定构型[J]. 机械工程学报, 2021, 57(23): 47-52.
[12] 赵子铭, 李晔卓, 姚燕安, 李锐明, 张倩倩. 6-URU支链四面体移动机构的越障步态规划[J]. 机械工程学报, 2021, 57(23): 85-96.
[13] 于金山, 李潇, 陶建国, 王浩威, 孙浩. 面向在轨装配的八索并联机构构型设计与工作空间分析[J]. 机械工程学报, 2021, 57(21): 1-10.
[14] 雷涛, 徐康, 汪首坤, 王军政, 刘冬琛, 刘鹏涛. 并联六轮腿机器人机身平稳性控制方法研究[J]. 机械工程学报, 2021, 57(21): 34-44.
[15] 高贯斌, 张石文, 那靖, 刘飞. 基于标定和关节空间插值的工业机器人轨迹误差补偿[J]. 机械工程学报, 2021, 57(21): 55-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05060958号 中国机械工程学会版权所有,未经同意请勿转载
中国机械工程学会/北京市海淀区首体南路9号主语国际4号楼11层,邮编100048
0