Please wait a minute...

机械工程学报  2021, Vol. 57 Issue (12): 51-61    DOI: 10.3901/JME.2021.12.051
  特邀专栏:汽车-道路相互作用动力学前沿问题 本期目录 | 过刊浏览 | 高级检索 |
电动汽车机-电-路耦合系统建模及动力学分析
李韶华1, 罗海涵1,2, 冯桂珍1,2, 杨建森3
1. 石家庄铁道大学省部共建交通工程结构力学行为与系统安全国家重点实验室 石家庄 050043;
2. 石家庄铁道大学机械工程学院 石家庄 050043;
3. 中汽研(天津)汽车工程研究院有限公司 天津 300300
Modeling and Dynamic Analysis of Mechanic-electro-road Coupling System of Electric Vehicles
LI Shaohua1, LUO Haihan1,2, FENG Guizhen1,2, YANG Jiansen3
1. State Key Laboratory of Structural Mechanical Behavior and System Safety of Traffic Engineering Structures, Shijiazhuang Tiedao University, Shijiazhuang 050043;
2. School of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043;
3. CATARC(Tianjin) Automotive Engineering Research Institute Co., Ltd., Tianjin 300300
全文: PDF(3203 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 轮毂电机驱动的电动汽车簧下质量大导致轮胎动载荷增加,电机电磁力也会加剧车辆振动,同时车辆和道路通过动态轮胎力相互耦合。为了探究电动汽车的振动机理,建立电动汽车机-电-路耦合系统非线性动力学模型,考虑悬架刚度、阻尼和轮胎刚度的非线性,并在传统路面不平顺激励的基础上叠加了轮毂电机的电磁激励和车路耦合引起的路面二次激励。解析推导电机电磁激励的表达式,建立轮毂电机三维实体有限元模型,计算磁通分布及电磁转矩,验证理论结果的有效性。利用模态叠加法推导了两端简支黏弹性地基梁的垂向位移响应,将其作为路面二次激励引入耦合系统模型。以车身加速度、悬架动挠度、轮胎力和轮胎四次幂合力作为评价指标,分析电磁激励、路面二次激励、车速和车辆非线性对车辆平顺性和道路友好性的影响。研究发现,车辆非线性对车辆振动和道路友好性的影响最大,电磁激励的影响次之,路面二次激励的影响较小;车辆高速行驶时,车身振动加剧且车辆载荷对道路损伤的影响更为显著;路面越平坦,以上三个因素的影响越大。所提出的车辆与电机、道路一体化建模思路,可为电动汽车动态设计和道路友好性研究提供借鉴。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李韶华
罗海涵
冯桂珍
杨建森
关键词 电动汽车电磁激励路面二次激励平顺性道路友好性    
Abstract:The increase in the unsprung mass of the electric vehicle driven by the in-wheel motor enlarges the tire dynamic loads, and the electromagnetic force of the motor will aggravate the vehicle vibration too. In the meanwhile, the vehicle and the road are interacted with each other through dynamic tire forces. In order to explore the vibration mechanism of electric vehicles, a non-linear dynamic model of the mechanic-electro-road coupling system for the electric vehicle is established, which takes into account the non-linearity of suspension stiffness, damping and tire stiffness. Based on the traditional road surface irregularity excitation, the electromagnetic excitation of the in-wheel motor and the road secondary excitation caused by the vehicle-road coupling are also considered. The expression of the electromagnetic excitation of the motor is analytically deduced, the three-dimensional solid finite element model of the in-wheel motor is established, the magnetic flux distribution and electromagnetic torque are calculated, and the validity of the theoretical results is verified. The modal superposition method is used to derive the vertical displacement response of the viscoelastic beam on the foundation simply supported at both ends, which is the secondary excitation of the road considered in the coupled system model. Taking vehicle body acceleration, suspension dynamic deflection, tire force and tire quartic force as evaluation indicators, the effects of electromagnetic excitation, road secondary excitation, vehicle driving speed and vehicle nonlinearity on vehicle vibration and road friendliness are analyzed. It is shown that vehicle nonlinearity has the greatest impact on vehicle vibration and road friendliness, followed by electromagnetic excitation, and road surface secondary excitation; When the vehicle is running at higher speed, the vehicle body vibration intensifies and the impact of vehicle load on road damage is more significant; On the flatter road, the influences of the above three factors are more obvious. The proposed vehicle and motor, road and integrated modeling ideas can provide reference for the dynamic design of electric vehicles and road-friendliness research.
Key wordselectric vehicle    electromagnetic excitation    secondary excitation of road surface    ride comfort    road friendliness
收稿日期: 2020-10-15      出版日期: 2021-08-31
ZTFLH:  U469  
基金资助:国家自然科学基金资助项目(11972238)
通讯作者: 罗海涵(通信作者),男,1994年出生。主要研究方向为车辆系统动力学与控制。E-mail:2237591321@qq.com   
作者简介: 李韶华,女,1973年出生,博士,教授,博士研究生导师。主要研究方向为车辆系统动力学与控制。E-mail:lishaohua@stdu.edu.cn;冯桂珍,女,1978年出生,副教授。主要研究方向为车辆系统动力学与控制。E-mail:fenggz@stdu.edu.cn;杨建森,男,1984年出生,高级工程师。主要研究方向为电动车辆底盘设计与控制。E-mail:yangjiansen@catarc.ac.cn
引用本文:   
李韶华, 罗海涵, 冯桂珍, 杨建森. 电动汽车机-电-路耦合系统建模及动力学分析[J]. 机械工程学报, 2021, 57(12): 51-61.
LI Shaohua, LUO Haihan, FENG Guizhen, YANG Jiansen. Modeling and Dynamic Analysis of Mechanic-electro-road Coupling System of Electric Vehicles. Journal of Mechanical Engineering, 2021, 57(12): 51-61.
链接本文:  
http://qikan.cmes.org/jxgcxb/CN/10.3901/JME.2021.12.051      或      http://qikan.cmes.org/jxgcxb/CN/Y2021/V57/I12/51
[1] YANG Shaopu, CHEN Liqun, LI Shaohua. Dynamics of vehicle-road coupled system[M]. Beijing:Springer Jointly Published with Science Press, 2015.
[2] 李韶华, 路永婕, 任剑莹. 重型汽车-道路三维相互作用动力学研究[M]. 北京:科学出版社, 2020. LI Shaohua, LU Yongjie, REN Jianying. Study on dynamics of three dimensional interaction between heavy vehicle and road[M]. Beijing:Science Press, 2020.
[3] 平先尧, 李亮, 程硕, 等. 四轮独立驱动汽车多工况路面附着系数识别研究[J]. 机械工程学报, 2019, 55(22):80-92. PING Xianyao, LI Liang, CHENG Shuo, et al. Tire-road friction coefficient estimators for 4WID electric vehicles on diverse road conditions[J]. Journal of Mechanical Engineering, 2019, 55(22):80-92.
[4] 王震坡, 丁晓林, 张雷. 四轮轮毂电机驱动电动汽车驱动防滑控制关键技术综述[J]. 机械工程学报, 2019, 55(12):99-120. WANG Zhenpo, DING Xiaolin, ZHANG Lei. Overview on key technologies of acceleration slip regulation for four-wheel-independently-actuated electric vehicles[J]. Journal of Mechanical Engineering, 2019, 55(12):99-120.
[5] 《中国公路学报》编辑部. 中国汽车工程学术研究综述. 2017[J]. 中国公路学报, 2017, 30(6):1-197. Editorial Department of China Journal of Highway and Transport. Review on China's automotive engineering research progress:2017[J]. China Journal of Highway and Transport, 2017, 30(6):1-197.
[6] 马琮淦, 左曙光, 谭钦文, 等. 电动车用永磁同步电机非线性扭转振动模型[J]. 振动与冲击, 2013, 32(12):131-134. MA Conggan, ZUO Shuguang, TAN Qinwen, et al. Nonlinear torsional vibration model of permanent magnet synchronous motors for electric vehicles[J].Vibration and Shock, 2013, 32(12):131-134.
[7] SONG Ziyou, LI Jianqiu, WEI Yintao, et al. Interaction of in-wheel permanent magnet synchronous motor with tire dynamics[J]. Chinese Journal of Mechanical Engineering, 2015, 28(3):470-478.
[8] 李庆. 轮毂电机电动车机电磁固耦合垂向振动特性研究[D]. 哈尔滨:哈尔滨工业大学, 2017. LI Qing. Electromagnetic-solid coupling vertical vibration characteristics of wheeled motor electric vehicle[D]. Harbin:Harbin Institute of Technology, 2017.
[9] SUN Wei, LI Yinong, HUANG Jingying, et al. Vibration effect and control of in-wheel switched reluctance motor for electric vehicle[J]. Journal of Sound and Vibration, 2015, 338(3):105-120.
[10] OKSUZTEPE E. In-wheel switched reluctance motor design for electric vehicles by using apareto-based multiobjective differential evolution algorithm[J]. IEEE Transactions on Vehicular Technology, 2016, 66(6):1-10.
[11] QIN Yechen, HE Chenchen, SHAO Xinxin et al. Vibration mitigation for in-wheel switched reluctance motor driven electric vehicle with dynamic vibration absorbing structures[J]. Journal of Sound and Vibration, 2018, 419(4):249-267.
[12] DING Hu, YANG Yan, CHEN Liqun, et al. Vibration of vehicle-pavement coupled system based on a Timoshenko beam on a nonlinear foundation[J]. Journal of Sound and Vibration, 2014, 333(24):6623-6636.
[13] LU Zheng, HU Zhi, YAO Hailin, et al.An analytical method for evaluating highway embankment responses with consideration of dynamic wheel-pavement interactions[J]. Soil Dynamics & Earthquake Engineering, 2016, 83(4):135-147.
[14] ELNASHAR G, BHAT B, SEDAGHATI R. Modeling and dynamic analysis of a vehicle-flexible pavement coupled system subjected to road surface excitation[J]. Journal of Mechanical Science and Technology, 2019, 33(7):3115-3125.
[15] KRISHNANUNNI C G, RAO B N. Decoupled technique for dynamic response of vehicle-pavement systems[J]. Engineering Structures, 2019, 191(3):264-279.
[16] YANG Shaopu, LI Shaohua, LU Yongjie. Investigation on dynamical interaction between a heavy vehicle and road pavement[J]. Vehicle System Dynamics, 2010, 48(8):923-944.
[17] 殷珺, 陈辛波, 吴利鑫, 等. 滤波白噪声路面时域模拟方法与悬架性能仿真[J]. 同济大学学报, 2017, 45(3):399-406. YIN Jun, CHEN Xinbo, WU Lixin, et al. Simulation method of road excitationin time domain using filtered white noise and dynamic analysis of suspension[J]. Journal of Tongji University, 2017, 45(3):399-406.
[18] 唐任远. 现代永磁电机理论与设计[M]. 北京:机械工业出版社, 2016. TANG Renyuan. Modern permanent magnet machines theory and design[M]. Beijing:China Machine Press, 2016.
[19] 杨蔚华. 半主动悬架电动轮汽车的动力学特性与振动控制研究[D]. 武汉:武汉科技大学, 2015. YANG Weihua. Simulation research on ride comfort of four in-wheel motors independent driven electric vehicle[D]. Wuhan:Wuhan University of Science and Technology, 2015.
[20] ISO 2631-1:1997(E). Mechanical vibration and shock-Evaluation of human exposure to whole-body vibration-Part 1:General requirements[S]. Geneva:ISO, 1997.
[1] 丁晓林, 王震坡, 张雷. 四轮轮毂电机驱动电动汽车驱动系统参数多目标优化匹配[J]. 机械工程学报, 2021, 57(8): 195-204.
[2] 许男, 李小雨. 复合工况下四轮驱动电动汽车操纵稳定性控制[J]. 机械工程学报, 2021, 57(8): 205-220.
[3] 梁艺潇, 李以农, KHAJEPOUR Amir, 郑玲. 基于转向与主动横摆力矩协调的四轮驱动智能电动汽车路径跟踪控制[J]. 机械工程学报, 2021, 57(6): 142-155.
[4] 徐向阳, 李光远, 陶斯友, 张辉. 四轮独立驱动电动汽车轮胎纵横向滑移能耗仿真分析[J]. 机械工程学报, 2021, 57(4): 92-102.
[5] 陈泽宇, 熊瑞, 李世杰, 张渤. 电动载运工具锂离子电池低温极速加热方法研究[J]. 机械工程学报, 2021, 57(4): 113-120.
[6] 杨绍普, 张俊宁, 路永婕, 李韶华. 汽车-道路相互作用研究进展[J]. 机械工程学报, 2021, 57(12): 1-17.
[7] 张雷, 刘青松, 王震坡. 四轮轮毂电机驱动电动汽车电液复合制动平顺性控制策略[J]. 机械工程学报, 2020, 56(24): 125-134.
[8] 林歆悠, 郑清香, 吴超宇. 基于GA-ECMS电机转矩优化的混合动力系统协调控制[J]. 机械工程学报, 2020, 56(2): 145-153.
[9] 王军年, 杨斌, 王庆年, 倪健土. 汽车转矩定向分配驱动技术发展现状综述[J]. 机械工程学报, 2020, 56(18): 92-104.
[10] 熊璐, 金达, 冷搏, 余卓平, 杨兴. 考虑复杂激励条件的分布式驱动电动汽车路面附着系数自适应估计方法[J]. 机械工程学报, 2020, 56(18): 123-133.
[11] 张雷, 余文, 王震坡, 丁晓林. 基于多方法切换的四轮轮毂电机驱动电动汽车容错控制策略[J]. 机械工程学报, 2020, 56(16): 227-239.
[12] 熊瑞, 李幸港. 基于双卡尔曼滤波算法的动力电池内部温度估计[J]. 机械工程学报, 2020, 56(14): 146-151.
[13] 李杰浩, 王军政, 汪首坤, 高群, 许铀. 电动汽车电接插件接触电阻振动特性的研究[J]. 机械工程学报, 2020, 56(11): 80-88.
[14] 张志勇, 张淑芝, 黄彩霞, 张刘铸, 李博浩. 基于自适应扩展卡尔曼滤波的分布式驱动电动汽车状态估计[J]. 机械工程学报, 2019, 55(6): 156-165.
[15] 陈泽宇, 熊瑞, 孙逢春. 电动汽车电池安全事故分析与研究现状[J]. 机械工程学报, 2019, 55(24): 93-104,116.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05060958号 中国机械工程学会版权所有,未经同意请勿转载
中国机械工程学会/北京市海淀区首体南路9号主语国际4号楼11层,邮编100048
0