Please wait a minute...

机械工程学报  2021, Vol. 57 Issue (12): 1-17    DOI: 10.3901/JME.2021.12.001
  特邀专栏:汽车-道路相互作用动力学前沿问题 本期目录 | 过刊浏览 | 高级检索 |
汽车-道路相互作用研究进展
杨绍普1, 张俊宁2, 路永婕1,3, 李韶华1
1. 石家庄铁道大学省部共建交通工程结构力学行为与系统安全国家重点实验室 石家庄 050043;
2. 石家庄铁道大学交通运输学院 石家庄 050043;
3. 石家庄铁道大学机械工程学院 石家庄 050043
Research Progress of Vehicle-pavement Interaction
YANG Shaopu1, ZHANG Junning2, LU Yongjie1,3, LI Shaohua1
1. State Key Laboratory of Mechanical Behavior in Traffic Engineering Structure and System Safety, Shijiazhuang Tiedao University, Shijiazhuang 050043;
2. School of Traffic and Transportation Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043;
3. School of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043
全文: PDF(947 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 回顾汽车-道路相互作用的研究历程和主要研究内容,分析汽车系统动力学、轮胎动力学和路面结构动力学三个研究领域之间的关系,分别从车辆的随机振动与道路友好性悬架、轮胎-路面接触动力学和动载荷下道路结构动力学三个层面对研究进展进行综述,提出汽车-道路相互作用研究中存在的问题和未来的发展方向。当前汽车-道路相互作用研究多集中于单一领域或者三个领域简单叠加,忽略或简化了汽车-道路之间相互作用、互相约束的复杂动态耦合关系,但是要满足车辆更高的控制精度和动力学性能优化,需要更多的考虑汽车-道路之间的相互作用关系。对于胎路接触关系,现有的研究多是以路面的特定参数来描述轮胎自身的滞回特性,考虑轮胎与路面之间的动态耦合特性需要更深一步研究。简单的路面不平度模型对路面的形貌描述不够,制约着车-路相互作用的研究,开展路面形貌特征的提取、描述和重构仍很重要。车辆运动控制的实现和控制器的设计多依赖于质心的动态响应和路面附着状况,汽车-轮胎-地面瞬态耦合机理及路面参数的高精度快速识别将是极具理论难度与工程应用的研究。此外,轮毂电机在新一代智能电动汽车的应用,改变了汽车底盘构型及载荷分布,考虑路面随机激励、电机激励及车路耦合激励的综合作用研究车-路相互作用及智能控制也是一项具有挑战性的科学问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨绍普
张俊宁
路永婕
李韶华
关键词 车-路相互作用胎-路动态摩擦道路友好性悬架三维路面谱路面参数识别    
Abstract:The research course and main contents of vehicle-pavement interactions are reviewed,and the relationship between three research fields of vehicle system dynamics,tire dynamics and pavement structure dynamics is analyzed. The research progress was reviewed from three levels,including random vibrations of vehicle and pavement-friendly suspensions,tire-pavement contact dynamics,pavement structure dynamics under dynamic load,thus proposing the problems existing in the research on vehicle-pavement interactions as well as the future development direction. Currently,research on vehicle-pavement interactions mostly focuses on a single field or the simple superposition of three fields,but ignoring or simplifying the complex dynamic coupling relationship between vehicle-pavement interactions and mutual restraints. However,to meet the higher control accuracy and dynamic performance optimization of vehicles,the interactions between vehicles and pavements need to be considered. As for the tire-pavement contact relationship,most of the existing researches are based on the specific parameters of the pavement to describe the hysteresis characteristics of the tire itself. The dynamic coupling characteristics between the tire and the pavement needs to be further studied. The simple pavement roughness model is insufficient to describe the topography of the pavement,which restricts the study of vehicle-pavement interactions. It is still significant to conduct the extraction,description and reconstruction of the pavement topography. The realization of vehicle motion control and the design of the controller mostly depend on the dynamic response of the mass center and the pavement adhesion. The vehicle-tire-pavement transient coupling mechanism as well as the high-precision and rapid identification of pavement parameters will be very theoretically difficult with huge engineering application prospects. In addition,the application of in-wheel motors in the new generation of intelligent electric vehicles has changed the chassis configuration and load distribution of vehicles. Considering the comprehensive effects of pavement random excitation,motor excitation and vehicle-pavement coupling excitation,research on vehicle-pavement interactions and intelligent control is also a challenging scientific issue.
Key wordsvehicle-pavement interaction    tire-pavement dynamic friction    pavement-friendly suspensions    three-dimensional pavement spectrum    identification of pavement parameters
收稿日期: 2020-07-27      出版日期: 2021-08-31
ZTFLH:  TB122  
基金资助:国家自然科学基金(12072204,11972238,11872255)和河北省自然基金(A2020210039)资助项目
通讯作者: 张俊宁(通信作者),男,1989年出生,博士研究生。主要研究方向为汽车-道路相互作用。E-mail:zhangtinian@163.com   
作者简介: 杨绍普,男,1962年出生,博士,教授,博士研究生导师。主要研究方向为非线性振动与控制、车-路耦合动力学。E-mail:yangsp@stdu.edu.cn;路永婕,女,1981年出生,博士,教授,博士研究生导师。主要研究方向为车辆主动安全、车-路刚柔耦合动力学、智能轮胎动力学。E-mail:lu-yongjie@163.com
引用本文:   
杨绍普, 张俊宁, 路永婕, 李韶华. 汽车-道路相互作用研究进展[J]. 机械工程学报, 2021, 57(12): 1-17.
YANG Shaopu, ZHANG Junning, LU Yongjie, LI Shaohua. Research Progress of Vehicle-pavement Interaction. Journal of Mechanical Engineering, 2021, 57(12): 1-17.
链接本文:  
http://qikan.cmes.org/jxgcxb/CN/10.3901/JME.2021.12.001      或      http://qikan.cmes.org/jxgcxb/CN/Y2021/V57/I12/1
[1] 王丹. 中国道路交通安全蓝皮书[M]. 北京:人民交通出版社, 2014WANG Dan. The blue book of road safety in China[M]. Beijing:China Communications Press, 2014.
[2] 张金喜. 道路路面性能评价理论及其应用[M]. 北京:科学出版社, 2014.ZHANG Jinxi. Evaluation theory and application of road pavement performance[M]. Beijing:China Science Publishing, 2014.
[3] 翟婉明. 车辆-轨道耦合动力学[M]. 北京:科学出版社, 2015.ZHAI Wanming. Vehicle-track coupled dynamics[M]. Beijing:Science Press, 2015.
[4] 翟婉明, 孙翔, 詹斐生. 机车车辆与轨道垂向相互作用的计算机仿真研究[J]. 中国铁道科学, 1993, 12(1):42-50.ZHAI Wanming, SUN Xiang, ZHAN Feisheng. Computer simulation of the vertical dynamic interactions between track and trains[J]. China Railway Science, 1993, 12(1):42-50.
[5] 翟婉明. 车辆-轨道垂向系统的统一模型及其耦合动力学原理[J]. 铁道学报, 1992, 14(3):10-21.ZHAI Wanming. The vertical model of vehicle-track system and its coupling dynamics[J]. Journal of the China Railway Society, 1992, 14(3):10-21.
[6] HE R, SANDU C, AAMIR KK, et al. Review of terramechanics models and their applicability to real-time applications[J]. Journal of Terramechanics, 2019, 81(1):3-22.
[7] 何健, 马吉胜, 吴大林. 车辆地面力学研究综述[J]. 火炮发射与控制学报, 2017, 38(2):89-93.HE Jian, MA Jisheng, WU Dalin. A research review of vehicle terramechanics[J]. Journal of Gun Launch & Control, 2017, 38(2):89-93.
[8] FRYBA L. Vibration of solids and structures under moving loads[M]. London:Thomas Telford Ltd, 1999.
[9] CEBON D. Handbook of vehicle-road interaction[M]. Lisse:Swets & Zeitleinger, 1999.
[10] OECD DIVNE. Dynamic interaction between vehicles and infrastructure experiment:Technical report[R]. Paris:Organization for Economic Co-operation and Development (OECD). Road Transport Research. Scientific Expert Group, 1998.
[11] 邓学钧, 孙璐. 车辆-地面结构系统动力学[M]. 北京:北京人民交通出版社, 2000.DENG Xuejun, SUN Lu. Dynamics of vehicle-ground pavement structure system[M]. Beijing:China Communications Publishing, 2000.
[12] SUN L. An overview of a unified theory of dynamics of vehicle-pavement interaction under moving and stochastic load[J]. Journal of Modern Transportation, 2013, 21(3):135-162.
[13] 吕彭民, 董忠红. 车辆-沥青路面系统力学分析[M]. 北京:人民交通出版社, 2010. LÜ Pengmin, DONG Zhonghong. Mechanical analysis of vehicle-asphalt pavement system[M]. Beijing:China Communications Publishing, 2010.
[14] 杨绍普, 陈立群, 李韶华. 车辆-道路耦合系统动力学研究[M]. 北京:科学出版社, 2012.YANG Shaopu, CHEN Liqun, LI Shaohua. Dynamics of vehicle-road coupled system[M]. Beijing:Science Press, 2012.
[15] KOZIN F, BOGDANOFF J L. On the statistical analysis of the motion of some simple two-dimensional linear vehicles moving on a random track[J]. International Journal of Mechanical Sciences, 1960, 2(3):168-178.
[16] PARLHILOVSKI I G. Spectral density of road microprofiles and vibrations of automobiles[J]. Avtorn. Prom., 1964, 30(1):15-18.
[17] AHMADI G, HASHEMI J. The random vibration of a nonuniform cantilever beam with concentrated mass[J]. Vehicle System Dynamics, 1973, 2(4):225-233
[18] DHIR A, SANKAR S. Analytical wheel models for ride dynamic simulation of off-road tracked vehicles[J]. Vehicle System Dynamics, 1997, 27(1):37-63.
[19] 王岩松, 李章明, 何辉, 等. 四轮车辆非平稳路面不平度时域模拟及小波分析[J]. 汽车工程, 2004, 2004(1):42-47.WANG Yansong, LI Zhangming, HE Hui, et al. Nonstationary road roughness simulation in time domain and wavelet analysis for four wheel vehicles[J]. Automotive Engineering, 2004, 2004(1):42-47.
[20] 徐斌, 王国栋, 曹立文. 悬架参数对行驶平顺性和道路友好性的影响[J]. 哈尔滨工业大学学报, 2004(2):191-194.XU Bin, WANG Guodong, CAO Liwen. Effect of suspension parameters on ride comfort and road friendliness[J]. Journal of Harbin Institute of Technology, 2004(2):191-194.
[21] BOGSJ K. Evaluation of stochastic models of parallel road tracks[J]. Probabilistic Engineering Mechanics, 2007, 22(4):362-370.
[22] PAPAGIANNAKIS A T, ZELELEW H M, MUHUNTHAN B. A wavelet interpretation of vehicle-pavement interaction[J]. International Journal of Pavement Engineering, 2007, 8(3):245-252.
[23] 郑仲浪, 吕彭民. 基于舒适性及道路友好性的拖挂车辆悬架参数优化方法[J]. 交通运输工程学报, 2009, 9(5):49-54.ZHENG Zhonglang, LÜ Pengmin. Optimization method of suspension parameters for articulated vehicle based on ride comfort and road-friendliness[J]. Journal of Traffic and Transportation Engineering, 2009, 9(5):49-54.
[24] 熊璐, 余卓平, 姜炜, 等. 基于纵向力分配的轮边驱动电动汽车稳定性控制[J]. 同济大学学报, 2010, 38(3):417-421.XIONG Lu, YU Zhuoping, JIANG Wei, et al. Research on vehicle stability control of 4WD electric vehicle based on longitudinal force control allocation[J]. Journal of Tongji University, 2010, 38(3):417-421.
[25] WEDIG W V. Digital simulation of road-vehicle systems[J]. Probabilistic Engineering Mechanics, 2012, 27(1):82-87.
[26] 朱延蕾. 多轴重型特种汽车在不同路面下振动性能的仿真与评价[D]. 长春:吉林大学, 2014.ZHU Yanlei. Simulation and evaluation of vibration performance for multi-axis heavy-duty special automobile under different road models[D]. Changchun:Jilin University, 2014.
[27] ŽURAULIS V, LEVULYT L, SOKOLOVSKIJ E. The impact of road roughness on the duration of contact between a vehicle wheel and road surface[J]. Transport, 2014, 29(4):431-439.
[28] 李韶华. 重载汽车-路面-路基耦合系统动力学研究[D]. 北京:北京交通大学, 2009.LI Shaohua. Investigation on dynamics of heavy vehicle-pavement-foundation coupled system[D]. Beijing:Beijing Jiaotong University, 2009.
[29] CEBON D. Theoretical road damage due to dynamic tyre forces of heavy vehicles. Part 1:Dynamic analysis of vehicles and road surfaces[J]. Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science, 1988, 202(2):103-108.
[30] GREEN M F, CEBON D. Dynamic response of highway bridges to heavy vehicle loads:Theory and Experimental Validation[J]. Journal of Sound & Vibration, 1994, 170(1):51-78.
[31] CEBON D, CB W. A study of road damage due to dynamic wheel loads using a load measuring mat[R]. Washington D. C.:Strategic Highway Research Program, National Research Council, 1991.
[32] CHOU H, D'ANDREA-NOVEL B. Global vehicle control using differential braking torques and active suspension forces[J]. Vehicle System Dynamics, 2005, 43(4):261-284.
[33] POUSSOT-VASSAL C, SENAME O, LDUGARD. Attitude and handling improvements through gain-scheduled suspensions and brakes control[J]. Control Engineering Practice, 2011, 19(1):252-263.
[34] 杨轸, 潘晓东. 考虑汽车动态响应的人-车-路闭环仿真模型[J]. 同济大学学报, 2006(11):1479-1483.YANG Zhen, PAN Xiaodong. Loop simulation model of driver-vehicle-road system considering vehicle dynamic response[J]. Journal of Tongji University, 2006(11):1479-1483.
[35] KARBALAEI R, GHAFFARI A, KAZEMI R, et al. A new intelligent strategy to integrated control of AFS/DYC based on fuzzy logic[J]. International Journal of Mathematical Physical & Engineering Sciences, 2007, 1(1):47-52.
[36] 郑仲浪, 吕彭民. 基于舒适性及道路友好性的拖挂车辆悬架参数优化方法[J].交通运输工程学报, 2009, 2009(5):53-58.ZHENG Zhonglang, LÜ Pengmin. Optimization method of suspension parameters for articulated vehicle based on ride comfort and road-friendliness[J]. Journal of Traffic and Transportation Engineering, 2009(5):53-58.
[37] 李韶华, 杨绍普, 郭树起. 采用改进模型的两自由度汽车悬架动力分析[J]. 科技导报, 2009, 27(2):33-37.LI Shaohua, YANG Shaopu, GUO Shuqi. Dynamical analysis of a two DOF vehicle suspension system using revised bingham model[J]. Science & Technology Review, 2009, 27(2):33-37
[38] 梁波, 苏世毅, 罗红. 不平整条件下车-路耦合作用动力分析[J]. 工程力学, 2009, 26(3):189-194.LIANG Bo, SU Shiyi, LUO Hong. Coupled dynamic analysis of vehicle-road system under roughness conditions[J]. Engineering Mechanics, 2009, 26(3):189-194.
[39] YANG Xiujian, WANG Zengcai, PENG Weili. Coordinated control of AFS and DYC for vehicle handling and stability based on optimal guaranteed cost theory[J]. Vehicle System Dynamics, 2009, 47(1):57-79.
[40] 王威, 李瑰贤, 宋玉玲. 汽车转弯高维非线性动力学特性研究[J]. 哈尔滨工程大学学报, 2009, 30(6):676-680.WANG Wei, LI Guixian, SONG Yuling. High-dimensional nonlinear vehicular turning dynamics[J]. Journal of Harbin Engineering University, 2009, 30(6):676-680.
[41] 李以农, 卢少波, 郑玲, 等. 车辆弯道变速行驶时的纵横向耦合控制研究[J]. 系统仿真学报, 2007(23):5524-5528.LI Yinong, LU Shaobo, ZHENG Ling, et al. Study on lateral and longitudinal coupling control when vehicle driving in crooked road with variable velocity[J]. Journal of System Simulation, 2007(23):5524-5528.
[42] 卢少波, 李以农, 郑玲. 基于制动与悬架系统的车辆主动侧翻控制的研究[J]. 汽车工程, 2011, 33(8):669-675.LU Shaobo, LI Yinong, ZHENG Ling. A study on vehicle active rollover control based on braking and suspension systems[J]. Automotive Engineering, 2011, 33(8):669-675.
[43] 李倩, 刘俊卿, 陈诚诚. 随机激励下四自由度车辆-路面耦合系统动力分析[J]. 应用数学和力学, 2015, 36(5):460-473.LI Qian, LIU Junqin, CHEN Chengcheng. Dynamic analysis of four-degree-of-freedom vehicle-road coupled system under random excitation[J]. Applied Mathematics and Mechanics, 2015, 36(5):460-473.
[44] LI S, YANG S, CHEN L. A nonlinear vehicle-road coupled model for dynamics research[J]. Journal of Computational and Nonlinear Dynamics, 2013, 8(2):1-14.
[45] LI S, YANG S, CHEN L. Investigation on cornering brake stability of a heavy-duty vehicle based on a nonlinear three-directional coupled model[J]. Applied Mathematical Modelling, 2016, 40(13-14):6310-6323.
[46] LI S, YANG S. Investigation on dynamics of a three-directional coupled vehicle-road system[J]. Journal of Vibroengineering, 2015, 17(7):3887-3908.
[47] 郝琪, 陈浩东. 天龙商用车驾驶室模态分析[J]. 重庆工学院学报, 2009, 23(10):9-12.HAO Qi, CHEN Haodong. Modal analysis on driver's cab of dongfeng tianlong commercial vehicle[J]. Journal of Chongqing Institute of Technology(Natural Science), 2009, 23(10):9-12.
[48] 马瑞雪. 大客车车身骨架的疲劳分析及二次开发[D]. 沈阳:东北大学, 2010.MA Ruixue. Fatigue analysis of bus skeletion and the secondary development[D]. Shenyang:Northeastern University, 2010.
[49] 王显会, 石磊. 某特种车架在冲击载荷下的瞬态响应分析及疲劳寿命评估研究[J]. 汽车工程, 2009, 31(8):769-773.WANG Xianhui, SHI Lei. A study on the transient response analysis and fatigue life evaluation of a special vehicle frame under impact load[J]. Automotive Engineering, 2009, 31(8):769-773.
[50] 任杰锶, 董小瑞. 基于ANSYS Workbench的某越野车车架有限元分析[J]. 中北大学学报, 2015, 36(4):428-434.REN Jiesi, DONG Xiaorui. Finite element analysis of a off-road vehicle frame based on ANSYS Workbench[J]. Journal of North University of China, 2015, 36(4):428-434.
[51] PARK D W, PAPAGAINNAKIS A T, KIM I T. Analysis of dynamic vehicle loads using vehicle pavement interaction model[J]. KSCE Journal of Civil Engineering, 2014, 18(7):2085-2092.
[52] 李韶华, 张兵, 黄玉亭. 刚柔耦合重型汽车建模及通过连续减速带的平顺性分析[J]. 动力学与控制学报, 2018, 16(5):397-402.LI Shaohua, ZHANG Bing, HUANG Yuting. Modeling of rigid-flexible coupled heavy-duty vehicle and ride comfort analysis when passing through continuous speed bumps[J]. Journal of Dynamics and Control, 2018, 16(5):397-402.
[53] ZHANG D J, TABARROK B. Dynamic modelling and simulation of log-hauling trucks with combined tire-cornering and braking forces[J]. Multibody System Dynamics, 2000, 4(1):1-22.
[54] REN W, ZHANG Y, JIN G. A new application of multi-body system dynamics in vehicle-road interaction simulation[J]. Wuhan University Journal of Natural Sciences, 2003, 8(2):379-382.
[55] TAYLOR R J, YIH P, GERDES J C. Safety performance and robustness of heavy vehicle AVCS[R]. Berkeley:Instifute of Transportatin Studies University of California.
[56] 李颂, 明磊, 张莉. 某轿车整车虚拟样机模型的操纵稳定性建模与仿真试验[J]. 工程与试验, 2009, 49(3):22-24. LI Song, MING Lei, ZHANG Li. Controllability and stability modeling & simulation of virtual car specimen[J]. Engineering & Test, 2009, 49(3):22-24.
[57] 任秀欢, 何杰. 基于人-车-路虚拟试验的道路线形安全性评价[J]. 公路, 2011, 2011(9):171-175.REN Xiuhuan, HE Jie. Safety Evaluation of road alignment based on human-vehicle-road virtual test[J]. Highway, 2011, 2011(9):171-175.
[58] FRANCISCO D, ADELINO F, PAULO F. Software tool for simulation of vehicle-Road interaction[J]. Engineering Computations, 2017, 34(5):1501-1526.
[59] LU Y, YANG S, LI S, et al. Numerical and experimental investigation on stochastic dynamic load of a heavy duty vehicle[J]. Applied Mathematical Modelling, 2010, 34(10):2698-2710.
[60] LU Ye, ZHENG W, CHEN E, et al. Research on ride comfort and safety of vehicle under limited conditions based on dynamical tire model[J]. Journal of Vibroengineering, 2017, 19(2):1241-1259.
[61] WANG W, LI I, CHEN M, et al. Dynamic slip-ratio estimation and control of antilock braking systems using an observer-based direct adaptive fuzzy-neural controller[J]. IEEE Transactions on Industrial Electronics, 2008, 56(5):1746-1756.
[62] ZHAO L, LIU Z, CHEN H. Vehicle state and friction force estimation using nonlinear observer strategies[C]//2008.
[63] DEWIT C C, TSIOTRAS P. Dynamic tire friction models for vehicle traction control[C]//Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No. 99CH36304). IEEE, 1999, 4:3746-3751.
[64] CHEN Yan, WANG Junmin. Vehicle longitudinal motion independent real time tire-pavement friction coefficient estimation[C]//49th IEEE Conference on Decision and Control (CDC). IEEE, 2010:2910-2915.
[65] YOON J H, EBEN L S, AHN C. Estimation of vehicle sideslip angle and tire-pavement friction coefficient based on magnetometer with GPS[J]. International Journal of Automotive Technology, 2016, 17(3):427-435.
[66] 郭孔辉, 卢荡, 吴海东. 轮胎动力学协同发展策略研究[J]. 中国工程科学, 2018, 20(1):91-96. GUO Konghui, LU Dang, WU Haidong. Tire dynamics collaborative development strategy[J]. Chinese Engineering Science, 2018, 20(1):91-96.
[67] FIALA E. Seitenkrafte am rollenden luftreifen[J]. ZVDI, 1954, 29(11):81-92.
[68] XIE Bin, LI Jingjing, LU Qianqian, et al. Simulation and experiment of virtual prototype braking system of combine harvester[J]. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(4):18-24.
[69] GIM G, NIKRAVESH P E. An analytical model of pneumatic tires for vehicle dynamic simulations[J]. International Journal of Vehicle Design, 1990, 11(6):589-618.
[70] GIM G, NIKRAVESH PE. A three dimensional tire model for steady-state simulations of vehicles[J]. SAE. Inc, 1993, 102(2):150-159.
[71] PACEJKA H B, BAKKER E. The magic formula tire model[J]. Vehicle System Dynamics, 1991, 21(Suppl.1):1-18
[72] YOSHITAKA T, HIDEFUMI I, SATORU K. Application of the magic formula tire model to motorcycle maneuverability analysis[J]. Jsae Review, 2001, 22(3):305-310.
[73] DUGOFF H, FANCHER P, SEGEL L. An analysis of tire traction properties and their influence on vehicle dynamic performance[J]. SAE Transactions, 1970, 79(1):341-366.
[74] AHMADI J, SEDIGH A K, KABGANIAN M. Adaptive vehicle lateral-plane motion control using optimal tire friction forces with saturation limits consideration[J]. Vehicular Technology IEEE Transactions on, 2009, 58(8):4098-4107.
[75] BALINT S. Vehicle test based validation of a tire brush model using an optical velocity sensor[J]. Periodica Polytechnica Transportation Engineering, 2012, 40(1):33-38.
[76] SVENDENIUS J, WITTENMARK B. Brush tire model with increased flexibility[C]//2003 European Control Conference (ECC). IEEE, 2003:1863-1868.
[77] TSIOTRAS P, VELENIS E, SORINE M. A LuGre tire friction model with exact aggregate dynamics[J]. Vehicle System Dynamics, 2004, 42(3):195-210.
[78] RAJAPALSHE M P, GUNARATNEM, KAW A K. Evaluation of LuGre tire friction model with measured data on multiple pavement surfaces[J]. Tire Science & Technology, 2010, 38(3):213-227.
[79] GUO K, LU D. Uni-tire:Unified tire model for vehicle dynamic simulation[J]. Vehicle System Dynamics, 2007, 45(Suppl.):79-99.
[80] 马晓. 不同轮胎模型对重型载货汽车整车性能仿真的影响分析[D]. 长春:吉林大学, 2013. MA Xiao. Analysis of influence of different tire models on performance simulation for heavy-duty truck[D]. Changchun:Jilin University, 2013.
[81] 李韶华, 周军魏, 张志达. 轮胎三向动态特性试验及非线性建模[J]. 机械工程学报, 2018, 54(18):85-96.LI Shaohua, ZHOU Junwei, ZHANG Zhida. Experiment and nonlinear modeling on tire dynamic characteristics of three directional[J]. Journal of Mechanical Engineering, 2018, 54(18):85-96.
[82] KAYACAN E, ONIZ Y, KAYNAK O. A grey system modeling approach for sliding-mode control of antilock braking system[J]. IEEE Transactions on Industrial Electronics, 2009, 56(8):3244-3252.
[83] GREENWOOD J A, WILLIAMSON J B P. Contact of nominally flat surfaces[J]. Proceedings of the royal society of London. Series A. Mathematical and Physical Sciences, 1966, 295(1442):300-319.
[84] GALA L, GUY L, ORANGE G, et al. Modelling of sliding friction for carbon black and silica filled elastomers on road tracks[J]. Wear, 2008, 264(7-8):606-615.
[85] CARBONE G, SCARAGGI M, TARTAGLINO U. Adhesive contact of rough surfaces:Comparison between numerical calculations and analytical theories[J]. European Physical Journal E:Soft Matter, 2009, 30(1):65-74.
[86] 危银涛, 沈筱亮. 轮胎稳态运动学与六分力预报Ⅰ理论与方法[J]. 机械工程学报, 2012, 48(15):65-74.WEI Yintao, SHEN Xiaoliang. Theory and method of tire rolling kinematics and prediction of tire forces and moments[J]. Journal of Mechanical Engineering, 2012, 48(15):65-74.
[87] 许洪国, 马彬, 许言. 考虑轮胎和路面特性的车辆制动稳定性分析[J]. 哈尔滨工程大学学报, 2013, 34(10):1287-1293.XU Hongguo, MA Bin, XU Yan. Analysis of the vehicle braking stability considering the tire and pavement features[J]. Journal of Harbin Engineering University, 2013, 34(10):1287-1293.
[88] MICHAEL G. FTire:A physically based application-oriented tyre model for use with detailed MBS and finite-element suspension models[J]. Vehicle System Dynamics, 2005, 43(suppl.1):76-91.
[89] HOPKINS B M. Adaptive rollover control algorithm based on an off-road tire model[J]. Applied Optics, 2009, 6(1):170-172.
[90] PIATKOWSKI T. Dahl and LuGre dynamic friction models-The analysis of selected properties[J]. Mechanism & Machine Theory, 2014, 73(1):91-100.
[91] GAFVERT M. Comparisons of two dynamic friction models[C]//Proceedings of the 1997 IEEE international Conference on Control applications. IEEE, 1997:386-391.
[92] DO N B, FERRIA A, BAUCHAU O. Efficient simulation of a dynamics system with LuGre friction[J]. Journal of Computational & Nonlinear Dynamics, 2007, 2(4):1439-1448.
[93] 左曙光, 苏虎, 王继瑞. 滚动汽车轮胎自激振动仿真及其影响因素分析[J]. 振动与冲击, 2012, 31(4):18-24.ZUO Shuguang, SU Hu, WANG Jirui. Simulation of self-excited vibration of a rolling tire and its influencing factors analysis[J]. Journal of Vibration and Shock, 2012, 31(4):18-24.
[94] LU Y, ZHANG J, YANG S, et al. Study on improvement of LuGre dynamical model and its application in vehicle handling dynamics[J]. Journal of Mechanical Science and Technology, 2019, 33(2):545-558.
[95] 焦云龙, 叶家鑫, 刘小君, 等. 表面润湿性对橡胶滑动接触界面摩擦特性的影响[J]. 机械工程学报, 2019, 55(1):106-111. JIAO Yunlong, YE Jiaxin, LIU Xiaojun, et al. Influence of surface wettability on the sliding frictional property of NBR rubber[J]. Journal of Mechanical Engineering, 2019, 55(1):106-11.
[96] 周海超, 王国林, 姜震, 等. 湿滑状态下轮胎路面摩擦特性的数值分析方法[J]. 机械工程学报, 2020, 54(21):117-185. ZHOU Haichao, WANG Guolin, JIANG Zhen, et al. Numerical analysis method for friction characteristics of tire-pavement under wet slip condition[J]. Journal of Mechanical Engineering, 2020, 54(21):117-185.
[97] KANE M, DO M T, CEREZO V, et al. Contribution to pavement friction modelling:An introduction of the wetting effect[J]. International Journal of Pavement Engineering, 2017, 18(7-8):965-976.
[98] LI L, RAN X, WU K, et al. A novel fuzzy logic correctional algorithm for traction control systems on uneven low-friction road conditions[J]. Vehicle System Dynamics, 2015, 53(6):711-733.
[99] KHALEGHIAN S, EMAMI A, TAHERI S. A technical survey on tire-road friction estimation[J]. Friction, 2017, 5(2):123-146.
[100] ALBINSSON A, BRUZELIUS F, JACOBSON B, et al. Design of tyre force excitation for tyre-road friction estimation[J]. Vehicle System Dynamics, 2016, 55(2):208-230.
[101] ENISZ K, SZALAY I, KOHLRUSZ G, et al. Tyre-road friction coefficient estimation based on the discrete-time extended Kalman filter[J]. Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile Engineering, 2015, 229(9):1158-1168.
[102] ZHAO Y, LI H, LIN F, et al. Estimation of road friction coefficient in different road conditions based on vehicle braking dynamics[J]. Chinese Journal of Mechanical Engineering, 2017, 30(4):982-990.
[103] 林棻, 张华达, 赵又群, 等. 基于轮胎侧偏刚度估计的路面附着条件辨识[J]. 华南理工大学学报, 2019, 47(11):16-24. LIN Fen, ZHANG Huada, ZHAO Youqun, et al. Identification of pavement adhesion condition based on tire cornering stiffness estimation[J]. Journal of South China University of Technology, 2019, 47(11):16-24.
[104] ARAT M A, SINGH K B, TAHERI S. An intelligent tyre based adaptive vehicle stability controller[J]. International Journal of Vehicle Design, 2014, 65(2-3):118-143.
[105] Li L, SONG J, LI H, et al. Comprehensive prediction method of road friction for vehicle dynamics control[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering, 2009, 223(8):987-1002.
[106] Li L, Yang K, Jia G, et al. Comprehensive tire-road friction coefficient estimation based on signal fusion method under complex maneuvering operations[J]. Mechanical Systems and Signal Processing, 2015, 56(1):259-276.
[107] GILLESPIE T D, KARAMIHAS S. Truck factors affecting dynamic loads and road damage[C]//Proceedings:International Technical Conference on the Enhanced Safety of Vehicles. National Highway Traffic Safety Administration, 1992, 1992:102-108.
[108] CAI Y, CHEN Y, CAO Z, et al. Dynamic responses of a saturated poroelastic half-space generated by a moving truck on the uneven pavement[J]. Soil Dynamics and Earthquake Engineering, 2015, 69(1):172-181.
[109] LIU B, SU Q, LIU T, et al. Dynamic response of water saturated subgrade surface layer under high speed train using moving element method[J]. Journal of Vibroengineering, 2017, 19(5):3720-3736.
[110] QIAN J, ZHOU R, CHEN S, et al. Influence of pavement roughness on dynamic stresses in saturated subsoil subjected to moving traffic loading[J]. International Journal of Geomechanics, 2018, 18(4):1-12.
[111] ANSARI M, ESMAILZADEH E, YOUNESIAN D. Internal-external resonance of beams on non-linear viscoelastic foundation traversed by moving load[J]. Nonlinear Dynamics, 2010, 61(1-2):163-182.
[112] YOUNESIAN D, MARJANI S R, ESMAILZADEH E. Nonlinear vibration analysis of harmonically excited cracked beams on viscoelastic foundations[J]. Nonlinear Dynamics, 2013, 71(1-2):109-120.
[113] ESMAILZADEH E, JALILI N. Vehicle-passenger-structure interaction of uniform bridges traversed by moving vehicles[J]. Journal of Sound and Vibration, 2003, 260(4):611-635.
[114] ELNASHAR G, BHAT R B, SEDAGHATI R. Modeling and dynamic analysis of a vehicle-flexible pavement coupled system subjected to road surface excitation[J]. Journal of Mechanical Science and Technology, 2019, 33(7):3115-3125.
[115] DING H, YANG Y, CHEN L, et al. Vibration of vehicle-pavement coupled system based on a Timoshenko beam on a nonlinear foundation[J]. Journal of Sound and Vibration, 2014, 333(24):6623-6636.
[116] CHEN S, WANG D, YI J, et al. Analytical solution and distribution characteristics of mechanical response for an elastic half-space body under a hyperbolic paraboloid vertical load[M]//Functional Pavement Design. CRC Press, 2016:729-739.
[117] YOU L, YAN K, HU Y, et al. Spectral element solution for transversely isotropic elastic multi-layered structures subjected to axisymmetric loading[J]. Computers and Geotechnics, 2016, 72(1):67-73.
[118] YOU L, YAN K, HU Y, et al. Impact of interlayer on the anisotropic multi-layered medium overlaying viscoelastic layer under axisymmetric loading[J]. Applied Mathematical Modelling, 2018, 61(1):726-743.
[119] YOU L, YAN K, HU Y, et al. Spectral element method for dynamic response of transversely isotropic asphalt pavement under impact load[J]. Road Materials and Pavement Design, 2018, 19(1):223-238.
[120] 张锋, 冯德成, 凌贤长, 等. 重载汽车-路面-路基垂向耦合动力学模型[J]. 中国公路学报, 2015, 4(1):1-12. ZHANG Feng, FENG Decheng, LING Xianchang, et al. Vertical coupling dynamics model of heavy truck-pavement-subgrade[J]. China Journal of Highway and Transport, 2015, 4(1):1-12.
[121] 张锋, 臧宏阳, 冯德成, 等. 模量不均匀路基上的沥青路面动力响应研究[J]. 土木工程学报, 2018, 3(1):115-122. ZHANG Feng, ZANG Hongyang, FENG Decheng, et al. Moving truck-induced dynamic response of asphalt pavement supported by subgrade with non-uniform modulus[J]. China Civil Engineering Journal, 2018, 3(1):115-122.
[122] 陈瑶, 蔡袁强, 曹志刚, 等. 不平顺路面对交通荷载引起的地基振动影响[J]. 浙江大学学报, 2019, 6(1):1031-1039. CHEN Yao, CAI Yuanqiang, CAO Zhigang, et al. Influences of pavement irregularity on ground vibrations generated by moving traffic load[J]. Journal of Zhejiang University, 2019, 6(1):1031-1039.
[123] 王旭东, 周兴业. 基于材料非线性的沥青路面结构当量力学分析方法[J]. 中国公路学报, 2019, 8(1):25-34. WANG Xudong, ZHOU Xingye. Equivalent mechanical method for asphalt pavement structure based on baterial nonlinearity[J]. China Journal of Highway and Transport, 2019, 8(1):25-34.
[124] 董泽蛟, 曹丽萍, 谭忆秋, 等. 移动荷载作用下沥青路面三向应变动力响应模拟分析[J]. 土木工程学报, 2009, 42(4):133-139. DONG Zejiao, CAO Liping, TAN Yiqiu, et al. Analysis of the dynamic response of three directional strains in asphaltpavement under moving vehicle loads[J]. China Civil Engineering Journal, 2009, 42(4):133-139.
[125] BESKOU N D, TSINOPOULOS S V, THEODOR-AKOPOULOS D D. Dynamic elastic analysis of 3-D flexible pavements under moving vehicles:A unified FEM treatment[J]. Soil Dynamics and Earthquake Engineering, 2016, 82(1):63-72.
[126] 严战友, 王朝辉, 陈恩利, 等. 离散元法的沥青路面车-路动力学响应分析[J]. 中国公路学报, 2019, 9(1):51-60, 79. YAN Zhanyou, WANG Zhaohui, CHEN Enli, et al. Dynamic response analysis of vehicle-load on asphalt pavement based on discrete element method[J]. China Journal of Highway and Transport, 2019, 9(1):51-60, 79.
[127] OZAKI S, HINATA K, SENATORE C, et al. Finite element analysis of periodic ripple formation under rigid wheels[J]. Journal of Terramechanics, 2015, 61(1):11-22.
[128] DU Y, GAO J, JIANG L, et al. Numerical analysis on tractive performance of off-road wheel steering on sand using discrete element method[J]. Journal of Terramechanics, 2017, 71(1):25-43.
[129] NISHIYAMA K, NAKASHIMA H, SHIMIZU H, et al. 2D FE-DEM analysis of contact stress and tractive performance of a tire driven on dry sand[J]. Journal of Terramechanics, 2017, 74(1):25-33.
[130] NISHIYAMA K, NAKASHIMA H, YOSHIDA T, et al. FE-DEM with interchangeable modeling for off-road tire traction analysis[J]. Journal of Terramechanics, 2018, 78(1):15-25.
[131] ZHAO C, ZANG M. Application of the FEM/DEM and alternately moving road method to the simulation of tire-sand interactions[J]. Journal of Terramechanics, 2017, 72(1):27-38.
[132] MICHAEL M, VOGEL F, PETERS B. DEM-FEM coupling simulations of the interactions between a tire tread and granular terrain[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 289(1):227-248.
[133] 徐卫潘, 曾海洋, 蒋超, 等. 越野车轮胎卵石路面牵引性能有限元与离散元耦合仿真及试验验证[J]. 兵工学报, 2019, 9(1):1961-1968. XU Weipan, ZENG Haiyang, JIANG Chao, et al. Simulation of tractive performance of off-road tire on gravel road by combined finite element-discrete element method and experimental validation[J]. Acta Armamentarii, 2019, 9(1):1961-1968.
[134] 陶泽峰, 钱劲松, 凌建明, 等. 湿度影响下的重载交通沥青路面动力响应[J]. 同济大学学报, 2016, 5(1):734-739. TAO Zefeng, QIAN Jinsong, LING Jianming, et al. Dynamic response of heavy-duty asphalt pavement affected by moisture[J]. Journal of Tongji University, 2016, 5(1):734-739.
[135] 张令刚, 钱振东, 杨理广, 等. 沥青混凝土路面表面形貌及抗滑性能的分形表达研究[J]. 公路, 2013(5):85-88. ZHANG Linggang, QIAN Zhendong, YANG Liguang, et al. Description of surface morphology and skid resistance of asphhalt concrete pavement with fractal theory[J]. Highway, 2013(5):85-88.
[136] 鲁植雄, 徐浩, 刘奕贯, 等. 基于分形插值的三维路面重构与分析[J]. 农业工程学报, 2014, 30(22):188-194. LU Zhixiong, XU Hao, LIU Yiguan, et al. Reconstruction and analysis of 3D road based on 3D fractal interpolation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(22):188-194.
[137] 刘永臣, 王国林, 孙丽, 等. 面向用户的汽车道路谱重构方法[J]. 中国机械工程, 2014, 2014(15):188-194. LIU Yongchen, WANG Guolin, SUN Li, et al. Reconstruction methods of vehicle road spectrum faced users[J]. China Mechanical Engineering, 2014, 2014(15):188-194.
[138] LIU Q. Three-dimensional pavement surface texture measurement and statistical analysis[D]. Winnipeg:University of Manitoba, 2015.
[139] LU Y, HUAI W, ZHANG J. Construction of three-dimensional road surface and application on interaction between wehicle and road[J]. Shock and Vibration, 2018, 2018(PT.2):1-14.
[1] 陈先华, 马耀鲁, 耿艳芬, 杨军. 路面工程中的车-路相互作用研究进展[J]. 机械工程学报, 2021, 57(12): 18-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05060958号 中国机械工程学会版权所有,未经同意请勿转载
中国机械工程学会/北京市海淀区首体南路9号主语国际4号楼11层,邮编100048
0