Please wait a minute...

中国机械工程  2021, Vol. 32 Issue (16): 1891-1903    DOI: 10.3969/j.issn.1004-132X.2021.16.001
  机械基础工程 本期目录 | 过刊浏览 | 高级检索 |
基础装备制造及高档集成数控机床研究进展
胡涞1, 查俊1, 朱永生1, 位文明1, 李东亚2, 罗明3, 牛文铁4, 陈耀龙1
1. 西安交通大学机械工程学院, 西安, 710049;
2. 洛阳轴承研究所有限公司, 洛阳, 471039;
3. 西北工业大学现代设计与集成制造技术教育部重点实验室, 西安, 710072;
4. 天津大学机构理论与装备设计教育部重点实验室, 天津, 300350
Research Progresses of Basic Equipment Manufacturing and High-grade Integrated CNC Machine Tools
HU Lai1, ZHA Jun1, ZHU Yongsheng1, WEI Wenming1, LI Dongya2, LUO Ming3, NIU Wentie4, CHEN Yaolong1
1. School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049;
2. Luoyang Bearing Research Institute Co., Ltd., Luoyang, Henan, 471039;
3. The Key Laboratory of Contemporary Design and Integrated Manufacturing Technology, Ministry of Education, Northwestern Polytechnical University, Xi'an, 710072;
4. Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, 300350
全文: PDF(26933 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为解决航空航天制造领域面临的关键问题以及提高机床行业的服务能力,机床行业提出建设航空航天制造领域高档数控机床创新能力平台。总结了创新平台的基础装备制造及高档数控机床的四个方面研究进展,包括电主轴单元技术(高速主轴-刀柄-刀具系统动力分析、数字化仿真和样机模态验证分析)、机床设计(直线轴进给系统刚柔耦合-机电耦合动力学、多轴联动与高速五坐标混联加工装备、摆动/回转进给系统的机电耦合动力学模型验证分析、MTC1000镗铣磨复合加工中心结构创新设计)、机床控制(高速启停残留振动抑制技术验证分析)和机床验证(航空航天结构件高速加工现场的数据采集、映射与存储技术分析)。最后展望了基础装备制造和高档数控机床的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡涞
查俊
朱永生
位文明
李东亚
罗明
牛文铁
陈耀龙
关键词 航空航天基础装备制造高档数控机床集成研究进展    
Abstract:In order to solve the key problems faced by the aerospace manufacturing fields and improve the service capability for the industries,the machine tool industry proposed to build an innovative capability platform for high-grade CNC machine tools in the field of aerospace manufacturing. The research progresses in four aspects of basic assembly manufacturing and high-grade CNC machine tools were summarized about the innovation platform, including:motorized spindle unit technology(dynamic analysis of high-speed spindle-tool handle-tool system, digital simulation and prototype modal verification analysis); machine tool design(rigid-flexible coupling-electromechanical coupling dynamics of linear axis feed system, verification and analysis of electromechanical coupling dynamic model of multi-axis linkage and high-speed five-coordinate hybrid machining equipment and swing/rotary feed system, innovative structural design of MTC1000 boring, milling and grinding composite machining center); machine tool control(verification and analysis of high-speed start-stop residual vibration suppression technology) and machine tool verification(analysis of field data acquisition, mapping and storage technology for high-speed machining of aerospace structural parts). Finally, the future research trends were prospected.
Key wordsaerospace    basic equipment manufacturing    high-grade CNC machine tool    integration    research progress
收稿日期: 2020-09-14      出版日期: 2021-08-26
ZTFLH:  TH16  
基金资助:国家重点研发计划(2020YFB2009604);国家科技重大专项(2017ZX04013001)
通讯作者: 陈耀龙(通信作者),男,1957年生,教授、博士研究生导师。研究方向为高档数控机床、高速高效/精密/超精密加工工艺及装备、智能制造装备以及先进制造技术。发表论文70余篇。E-mail:chenzwe@mail.xjtu.edu.cn。     E-mail: chenzwe@mail.xjtu.edu.cn
作者简介: 胡涞,男,1993年生,博士研究生。研究方向为高端装备技术、高速高效/精密/超精密加工工艺及装备。E-mail:hulai0405@stu.xjtu.edu.cn。
引用本文:   
胡涞, 查俊, 朱永生, 位文明, 李东亚, 罗明, 牛文铁, 陈耀龙. 基础装备制造及高档集成数控机床研究进展[J]. 中国机械工程, 2021, 32(16): 1891-1903.
HU Lai, ZHA Jun, ZHU Yongsheng, WEI Wenming, LI Dongya, LUO Ming, NIU Wentie, CHEN Yaolong. Research Progresses of Basic Equipment Manufacturing and High-grade Integrated CNC Machine Tools. China Mechanical Engineering, 2021, 32(16): 1891-1903.
链接本文:  
http://qikan.cmes.org/zgjxgc/CN/10.3969/j.issn.1004-132X.2021.16.001      或      http://qikan.cmes.org/zgjxgc/CN/Y2021/V32/I16/1891
[1] NONE. Aerospace Technology[J]. Aircraft Engineering & Aerospace Technology,1995,67(6):35-41.
[2] BOLONKIN A. New Concepts, Ideas and Innovations in Aerospace, Technology and Human Science[M].New York:Nova Science Publishers, 2008.
[3] 曹华军,杜彦斌.机床装备在役再制造的内涵及技术体系[J].中国机械工程, 2018,29(19):2357-2363. CAO Huajun, DU Yanbin. Connotation and Technical System of In-service Remanufacturing of MachineTool Equipment[J]. China Mechanical Engineering, 2018,29(19):2357-2363.
[4] LIU T, GAO W, ZHANG D, et al. Analytical Modeling for Thermal Errors of Motorized Spindle Unit[J]. International Journal of Machine Tools and Manufacture,2017, 112:53-70.
[5] TIAN H, YANG Z, CHEN L, et al. Control of Mutual Dragging Test for Motorized Spindle Based on Improved Direct Torque Control[C]//2018 12th International Conference on Reliability, Maintainability, and Safety(ICRMS). Changchun,2018:270-276.
[6] GE Z, DING X. Design of Thermal Error Control System for High-speed Motorized Spindle Based on Thermal Contraction of CFRP[J]. International Journal of Machine Tools and Manufacture, 2018,125:99-111.
[7] 李杰,谢福贵,刘辛军,等. 五轴数控机床空间定位精度改善方法研究现状[J].机械工程学报,2017,53(7):113-128. LI Jie, XIE Fugui, LIU Xinjun,et al. Research Status of Improving Methods for Space Positioning Accuracy of Five-axis Numerical Control Machine Tools[J]. Journal of Mechanical Engineering, 2017,53(7):113-128.
[8] KUSHNIR E, PORTMAN V T, AGUILAR A, et al. Layout Evaluation at Earlier Stages of Machine Tool Design:Form-shaping Function-based Approach[J]. The International Journal of Advanced Manufacturing Technology, 2013,90(9/12):3333-3346.
[9] CHEN W, LUO X, SU H, et al. An Integrated System for Ultra-precision Machine Tool Design in Conceptual and Fundamental Design Stage[J]. The International Journal of Advanced Manufacturing Technology, 2016,84(5/8):1177-1183.
[10] YAO Y, LIU M, DU J, et al. Design of a Machine Tool Control System for Function Reconfiguration and Reuse in Network Environment[J]. Robotics and Computer-Integrated Manufacturing, 2019,56:117-126.
[11] BEAREE R, BARRE P J, BLOCH S. Influence of High-speed Machine Tool Control Parameters on the Contouring Accuracy, Application to Linear and Circular Interpolation[J]. Journal of Intelligent and Robotic Systems, 2004,40(3):321-342.
[12] PAPAGEORGIOU D, BLANKE M, NIEMANN H H, et al. Friction-resilient Position Control for Machine Tools:Adaptive and Sliding-mode Methods Compared[J]. Control Engineering Practice, 2018,7:69-85.
[13] LEE K I, YANG S H. Measurement and Verification of Position-independent Geometric Errors of a Five-axis Machine Tool Using a Double Ball-bar[J]. International Journal of Machine Tools and Manufacture, 2013,70:45-52.
[14] ZHAO L, CHEN W Y, MA J F, et al. Structural Bionic Design and Experimental Verification of a Machine Tool Column[J]. Journal of Bionic Engineering,2008, 5:46-52.
[15] AGUADO S, SANTOLARIA J, SAMPER D, et al. Adequacy of Technical and Commercial Alternatives Applied to Machine Tool Verification Using Laser Tracker[J]. Applied Sciences, 2016, 6(4):100.
[16] MUTILBA U, YAGVE-FABRA J A, GOMEZ-ACEDO E, et al. Integrated Multilateration for Machine Tool Automatic Verification[J].CIRP Annals, 2018,67(1):555-558.
[17] YAN S, LI B, HONG J. Bionic Design and Verification of High-precision Machine Tool Structures[J]. The International Journal of Advanced Manufacturing Technology, 2015,81(1/4):73-85.
[18] GUPTA P, SZEKERES A, JESWIET J. Design and Development of an Aerospace Component with Single-point Incremental Forming[J]. International Journal of Advanced Manufacturing Technology, 2019,103(5):71-76.
[19] KONO D, MIZUNO S, MURAKI T, et al. A Machine Tool Motorized Spindle with Hybrid Structure of Steel and Carbon Fiber Composite[J]. CIRP Annals, 2019, 68(1):389-392.
[20] GUO T, YAN Z, WANG Y, et al. Mechanical Property Analysis of Joint on the Cylindrical Waveform Topography Surface[J]. Materials Science and Engineering,2019, 612(3):032154.
[1] 张家旭, 赵健, 施正堂, 杨雄. 基于耗散性理论的汽车底盘集成非线性鲁棒约束优化控制[J]. 中国机械工程, 2021, 32(8): 883-889.
[2] 杨旭, 周德俭, 庄功伟, 宋微, 刘潇龙, 佘雨来. 基于改进响应面法的电缆-碳纤维增强复合材料集成构件电缆埋置位置优化[J]. 中国机械工程, 2021, 32(16): 2008-2015.
[3] 郭俊超, 甄冬, 孟召宗, 师占群, 谷丰收. 基于WAEEMD和MSB的滚动轴承故障特征提取[J]. 中国机械工程, 2021, 32(15): 1793-1800.
[4] 陈勇, 陈燚, 裴植, 王成. 基于文献计量的数字孪生研究进展分析[J]. 中国机械工程, 2020, 31(7): 797-807.
[5] 詹梅, 雷煜东, 郑泽邦. 集成计算材料工程在精确塑性成形中的应用现状与发展趋势[J]. 中国机械工程, 2020, 31(22): 2663-2677.
[6] 庄原, 孔宁, 任杰, 刘育强, 王耀兵, 张杰, 马帅. 在轨可更换模块对接接口技术综述[J]. 中国机械工程, 2020, 31(16): 1917-1930.
[7] 贺长征, 宋豫川, 雷琦, 吕向飞, 刘软香, 陈进. 柔性作业车间多自动导引小车和机器的集成调度[J]. 中国机械工程, 2019, 30(4): 438-447.
[8] 张恒, 李爱平, 傅翔, 邵焕, 刘雪梅. 面向混批加工的装夹方案选择与线平衡集成优化方法[J]. 中国机械工程, 2019, 30(20): 2497-2504.
[9] 文笑雨, 罗国富, 李浩, 肖艳秋, 乔东平. 两阶段混合算法求解集成工艺规划与调度问题[J]. 中国机械工程, 2018, 29(22): 2716-2724,2732.
[10] 胡建军1,3;陈进3;权凌霄1,2;张晋1,2;孔祥东1,2. 液压集成块湍流模型修正及内流特性分析[J]. 中国机械工程, 2017, 28(14): 1708-1713.
[11] 韩中合;徐搏超;朱霄珣;焦宏超. 基于近似熵和集成经验模态分解的转子多故障诊断方法研究[J]. 中国机械工程, 2016, 27(16): 2186-2189,2248.
[12] 王献红1,2;史国权1. 一种基于单元化制造及时间任务总线的计划调度模式构建[J]. 中国机械工程, 2015, 26(5): 637-640.
[13] 关雪梅;郝秀红. 机电集成电磁蜗杆传动在系统参数激励下的稳定性分析[J]. 中国机械工程, 2015, 26(5): 663-667.
[14] 刘明周;马靖;王强;杨清. 一种物联网环境下的制造资源配置及信息集成技术研究[J]. 中国机械工程, 2015, 26(3): 339-347.
[15] 巴黎;李言;杨明顺;刘永;高新勤. 考虑不确定加工时间的工艺规划与调度集成问题研究[J]. 中国机械工程, 2015, 26(24): 3348-3355.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05060958号 中国机械工程学会版权所有,未经同意请勿转载
中国机械工程学会/北京市海淀区首体南路9号主语国际4号楼11层,邮编100048
0