Please wait a minute...

中国机械工程  2021, Vol. 32 Issue (15): 1765-1775    DOI: 10.3969/j.issn.1004-132X.2021.15.001
  机械基础工程 本期目录 | 过刊浏览 | 高级检索 |
深空着陆探测足式机器人发展综述
孙俊凯1, 孙泽洲2, 辛鹏飞2,3, 刘宾2,3, 危清清2,3, 闫楚良1
1. 吉林大学机械与航空航天工程学院, 长春, 130025;
2. 北京空间飞行器总体设计部, 北京, 100094;
3. 空间智能机器人系统技术与应用北京市重点实验室, 北京, 100094
Review on Development of Legged Robots for Deep Space Landing Exploration
SUN Junkai1, SUN Zezhou2, XIN Pengfei2,3, LIU Bin2,3, WEI Qingqing2,3, YAN Chuliang1
1. School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025;
2. Beijing Institute of Spacecraft System Engineering, Beijing, 100094;
3. Beijing Key Laboratory of Intelligent Space Robotic System Technology and Applications, Beijing, 100094
全文: PDF(9031 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 介绍了世界主要航天大国关于深空着陆探测足式机器人的研究现状,对比分析了不同类型足式机器人的优缺点,从硬件与软件设计方面剖析了足式机器人在深空着陆探测任务中尚未工程化的主要问题。以此为基础,提炼出感知融合化技术、控制智能化技术、形态可重构技术、多机协同化技术等深空着陆探测足式机器人发展的关键技术,为中国研制深空着陆探测领域可工程应用的足式机器人提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙俊凯
孙泽洲
辛鹏飞
刘宾
危清清
闫楚良
关键词 深空着陆探测足式机器人关键技术工程应用    
Abstract:The research status of deep space landing exploration legged robots was introduced in the major aerospace powers, such as the United States, Europe and China. Moreover, advantages and disadvantages of legged robots for deep space landing exploration were analyzed, and the issues that caused the legged robots not to be used in engineering yet were discussed from the hardware and software design aspects. Then, the key technologies of legged robots for deep space landing exploration were proposed, including sensory fusion technology, intelligent control technology, reconfigurable structure technology and multi-robot cooperation technology, which offer references for the development of legged robots that may be actually applied in the deep space landing exploration.
Key wordsdeep space landing exploration    legged robot    key technology    engineering application
收稿日期: 2020-07-28      出版日期: 2021-08-14
ZTFLH:  V476  
通讯作者: 辛鹏飞(通信作者),男,1990年生,工程师、博士。研究方向为多体系统动力学、机器人运动与控制等。E-mail:pengfeixin@outlook.com。     E-mail: pengfeixin@outlook.com
作者简介: 孙俊凯,男,1995年生,博士研究生。研究方向为空间足式机器人控制。E-mail:sunjunkaijlu@163.com。
引用本文:   
孙俊凯, 孙泽洲, 辛鹏飞, 刘宾, 危清清, 闫楚良. 深空着陆探测足式机器人发展综述[J]. 中国机械工程, 2021, 32(15): 1765-1775.
SUN Junkai, SUN Zezhou, XIN Pengfei, LIU Bin, WEI Qingqing, YAN Chuliang. Review on Development of Legged Robots for Deep Space Landing Exploration. China Mechanical Engineering, 2021, 32(15): 1765-1775.
链接本文:  
http://qikan.cmes.org/zgjxgc/CN/10.3969/j.issn.1004-132X.2021.15.001      或      http://qikan.cmes.org/zgjxgc/CN/Y2021/V32/I15/1765
[1] 吴伟仁, 于登云. 深空探测发展与未来关键技术[J]. 深空探测学报, 2014, 1(1):5-17. WU Weiren, YU Dengyun. Development of Deep Space Exploration and Its Future Key Technologies[J]. Journal of Deep Space Exploration, 2014, 1(1):5-17.
[2] 叶培建, 彭兢. 深空探测与我国深空探测展望[J]. 中国工程科学, 2006, 8(10):13-18. YE Peijian, PENG Jing. Deep Space Exploration and Its Prospect in China[J]. Strategic Study of CAE, 2006, 8(10):13-18.
[3] 吴伟仁, 刘继忠, 唐玉华, 等. 中国探月工程[J]. 深空探测学报, 2019, 6(5):405-416. WU Weiren, LIU Jizhong, TANG Yuhua, et al. China Lunar Exploration Program[J]. Journal of Deep Space Exploration, 2019, 6(5):405-416.
[4] 欧阳自远, 肖福根. 火星探测的主要科学问题[J]. 航天器环境工程, 2011, 28(3):205-217. OUYANG Ziyuan, XIAO Fugen. Major Scientific Issues Involved in Mars Exploration[J]. Spacecraft Environment Engineering, 2011, 28(3):205-217.
[5] 丁希仑, 石旭尧, ALBERTO R, 等. 月球探测(车)机器人技术的发展与展望[J]. 机器人技术与应用, 2008(3):5-9. DING Xilun, SHI Xuyao, ALBERTO R, et al. Development and Prospect of Lunar Exploration Robots(Rovers)[J]. Robot Technology and Application, 2008(3):5-9.
[6] WANG T M, TAO Y, LIU H. Current Researches and Future Development Trend of Intelligent Robot:a Review[J]. International Journal of Automation and Computing, 2018, 15(5):525-546.
[7] SAJAD S, MICHAEL T, MAE S, et al. Multiple-Robot Simultaneous Localization and Mapping:a Review[J]. Journal of Field Robotics, 2016, 33(1):3-46.
[8] SASAKI S, KUBOTA T, OKADA T, et al. Scientific Exploration of Lunar Surface Using a Rover in Japanese Future Lunar Mission[J]. Advances in Space Research, 2002, 30(8):1921-1926.
[9] BIESIADECKI J J, BAUMGARTNER E T, BONITZ R G, et al. Mars Exploration Rover Surface Operations:Driving Opportunity at Meridiani Planum[C]//IEEE International Conference on Systems, Man & Cybernetics. Waikoloa, 2005:1823-1830.
[10] WELCH R, LIMONADI D, MANNING R. Systems Engineering the Curiosity Rover:a Retrospective[C]//8th International Conference on System of Systems Engineering:SoSE in Cloud Computing and Emerging Information Technology Applications. Maui, 2013:70-75.
[11] 孙泽洲, 孟林智. 中国深空探测现状及持续发展趋势[J]. 南京航空航天大学学报, 2015, 47(6):785-791. SUN Zezhou, MENG Linzhi. Current Situation and Sustainable Development Trend of Deep Space Exploration in China[J]. Journal of Nanjing University of Aeronautics&Astronautics, 2015, 47(6):785-791.
[12] 杜宇, 盛丽艳, 张熇, 等. 月球水冰赋存形态分析及原位探测展望[J]. 航天器环境工程, 2019, 36(6):607-614. DU Yu, SHENG Liyan, ZHANG He, et al. Analysis of the Occurrence Mode of Water Ice on the Moon and the Prospect of In-situ Lunar Exploration[J]. Spacecraft Environment Engineering, 2019, 36(6):607-614.
[13] 于登云, 张哲, 泮斌峰, 等. 深空探测人工智能技术研究与展望[J]. 深空探测学报, 2020, 7(1):11-23. YU Dengyun, ZHANG Zhe, PAN Binfeng, et al. Development and Trend of Artificial Intelligent in Deep Space Exploration[J]. Journal of Deep Space Exploration, 2020, 7(1):11-23.
[14] 张崇峰, 韩亮亮. 面向载人月球探测任务的月面机器人系统初探[J]. 载人航天, 2019, 25(5):561-571. ZHANG Chongfeng, HAN Liangliang. Preliminary Study on Lunar Robot for Manned Lunar Exploration[J]. Manned Spaceflight, 2019, 25(5):561-571.
[15] 韩亮亮, 陈萌, 张崇峰, 等. 月面服务机器人研究进展及发展设想[J]. 载人航天, 2018, 24(3):313-320. HAN Liangliang, CHEN Meng, ZHANG Chongfeng, et al. Research Progress and Development Conception of Lunar Service Robot[J]. Manned Spaceflight, 2018, 24(3):313-320.
[16] 刘庆运, 景甜甜. 六足步行机器人及其步态规划研究进展[J]. 重庆理工大学学报(自然科学), 2015, 29(7):87-94. LIU Qingyun, JING Tiantian. Survey on Hexapod Walking Robot and Gait Planning[J]. Journal of Chongqing University of Technology(Natural Science), 2015, 29(7):87-94.
[17] 庄红超. 电驱动大负重比六足机器人结构设计及其移动特性研究[D]. 哈尔滨:哈尔滨工业大学, 2014. ZHUANG Hongchao. Electrically Driven Large-load-ratio Six-legged Robot Structural Design and Its Mobile Characteristics Research[D]. Harbin:Harbin Institute of Technology, 2014.
[18] BARES J, HEBERT M. Ambler:an Autonomous Rover for Planetary Exploration[J]. Computer, 1989, 22(6):18-26.
[19] THOMAS H J, WETTERGREEN D S, THOR-PE C E, et al. Simulation of the Ambler Environment[C]//21st Annual Pittsburgh Conference on Modeling and Simulation. Pittsburgh, 1990:1807-1810.
[20] SIMMONS R, KROTKOV E. An Integrated Wa-lking System for the Ambler Planetary Rover[C]//IEEE International Conference on Robotics & Automation. Sacramento, 1991:2086-2091.
[21] DAVID W, HANS T, CHUCK T. Planning Strategies for the Ambler Walking Robot[C]//IEEE International Conference on Systems Engineering. Pittsburgh, 1990:198-203.
[22] KROTKOV E, SIMMONS R G. Perception, Planning, and Control for Autonomous Walking with the Ambler Planetary Rover[J]. International Journal of Robotics Research, 1996, 15(2):155-180.
[23] ERIC K, JOHN B, TAKEO K, et al. Ambler:a Six-legged Planetary Rover[C]//The 5th International Conference on Advanced Robotics. Pisa, 1991:717-722.
[24] DAVID S W. Robotic Walking in Natural Terrain:Gait Planning and Behavior-based Control for Statically-stable Walking Robots[M]. Pittsburgh:Carnegie Mellon University, 1996:20-29.
[25] WETTERGREEN D, THORPE C. Developing Planning and Reactive Control for a Hexapod Robot[C]//IEEE International Conference on Robotics & Automation. Minneapolis, 1996:2718-2723.
[26] GIBBONS A. Dante Goes into the Volcano[J]. Science, 1994, 265(5173):731.
[27] FONG T, PANGELS H, WETTERGREEN D, et al. Operator Interfaces and Network-based Participation for Dante Ⅱ[C]//25th International Conference on Environmental Systems.San Diego,1995:131-137.
[28] WETTERGREEN D, PANGELS H, BARES J. Behavior-based Gait Execution for the Dante Ⅱ Walking Robot[C]//IEEE International Conference on Intelligent Robots and Systems. Pittsburgh, 1995:274-279.
[29] JOHN E B. Dante Ⅱ:Technical Description, Results, and Lessons Learned[J]. International Journal of Robotics Research, 1999, 18(7):621-649.
[30] MURALI K, JOHN B, ED M. Tethering System Design for Dante Ⅱ[C]//IEEE International Conference on Robotics & Automation. Albuquerque, 1997:1100-1105.
[31] WILCOX B, LITWIN T, BIESIADECKI J, et al. ATHLETE:a Cargo Handling and Manipulation Robot for the Moon[J]. Journal of Field Robotics, 2007, 24(5):421-434.
[32] WILCOX B H. ATHLETE:a Mobility and Manipulation System for the Moon[C]//IEEE Aerospace Conference. Big Sky, 2007:1-10.
[33] HEVERLY M, MATTHEWS J, FROST M, et al. Development of the Tri-ATHLETE Lunar Vehicle Prototype[C]//The 40th Aerospace Mechanisms Symposium. Cleveland, 2010:1-10.
[34] HOWE A S, WILCOX B. Outpost Assembly Using the ATHLETE Mobility System[C]//IEEE Aerospace Conference. Big Sky, 2016:1-9.
[35] WILCOX B. ATHLETE:Lunar Cargo Unloading from a High Deck[C]//2010 IEEE Aerospace Conference. Big Sky, 2010:1-9.
[36] WHEELER D D, CHAVEZ-CLEMENTE D, SUNSPIRAL V K. FootSpring:a Compliance Model for the ATHLETE Family of Robots[C]//10th International Symposium on Artificial Intelligence, Robotics and Automation in Space. Sapporo, 2011:1-8.
[37] NORRIS J S, VONA M A, RUS D. Operator Interface and Control Software for the Reconfigurable Surface System Tri-ATHLETE[R]. Washington DC:NASA, 2012.
[38] TOWNSEND J, BIESIADECKI J, COLLINS C. ATHLETE Mobility Performance with Active Terrain Compliance[C]//IEEE Aerospace Conference. Big Sky, 2010:1-7.
[39] BARTSCH S, BIRNSCHEIN T, RÖMMERM-ANN M, et al. Development of the Six-legged Walking and Climbing Robot Space Climber[J]. Journal of Field Robotics, 2012, 29(3):506-532.
[40] BARTSCH S, BIRNSCHEIN T, CORDES F, et al. Space Climber:Development of a Six-legged Climbing Robot for Space Exploration[C]//International Symposium on & German Conference on Robotics. Munich, 2010:1265-1272.
[41] MALTE L, SEBASTIAN B, STEFAN H. Validation of Simulation-based Morphology Design of a Six-legged Walking Robot[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 57(6):1885-92.
[42] CORDES F, BARTSCH S, BIRNSCHEIN T, et al. Towards an Intelligent Foot for Walking and Clim-bing Robots[C]//International Symposium on & German Conference on Robotics. Munich, 2010:1225-1232.
[43] HILLJEGERDES J, KAMPMANN P, BOSSE S, et al. Development of an Intelligent Joint Actuator Prototype for Climbing and Walking Robots[C]//12th International Conference on Climbing & Walking Robots & the Support Technologies for Mobile Machines. Istanbul, 2009:942-949.
[44] ROEHR T M, CORDES F, KIRCHNER F. Reconfigurable Integrated Multirobot Exploration System(RIMRES):Heterogeneous Modular Reconfigurable Robots for Space Exploration[J]. Journal of Field Robotics, 2014, 31(1):3-34.
[45] WENZEL W, CORDES F, KIRCHNER F. A Robust Electro-mechanical Interface for Cooperating Heterogeneous Multi-robot Teams[C]//International Conference on Intelligent Robots & Systems. Hamburg, 2015:1732-1737.
[46] DETTMANN A, WANG Z, WENZEL W, et al. Heterogeneous Modules with a Homogeneous Electromechanical Interface in Multi-module Systems for Space Exploration[C]//IEEE International Conference on Robotics & Automation. Shanghai, 2011:1964-1969.
[47] FLORIAN C, FRANK K, AJISH B. Design and Field Testing of a Rover with an Actively Articulated Suspension System in a Mars Analog Terrain[J]. Journal of Field Robotics, 2018, 35(7):1149-1181.
[48] BRINKMANN W, ROEHR T M, NATARAJAN S, et al. Design and Evaluation of an End-effector for a Reconfigurable Multi-robot System for Future Planetary Missions[C]//IEEE Aerospace Conference. Big Sky, 2018:1-10.
[49] KUHN D, ROMMERMANN M, SAUTHOFF N, et al. Concept Evaluation of a New Biologically Inspired Robot "LittleApe"[C]//Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on Intelligent Robots and Systems. St. Louis, 2009:589-594.
[50] KUEHN D, BERNHARD F, GRIMMINGER F, et al. Development of Passive Spine and Actuated Rear Foot for an Ape-like Robot[C]//Emerging Trends in Mobile Robotics(CLAWAR-2010). Chennai, 2010:237-244.
[51] KUEHN D, SCHILLING M, STARK T, et al. System Design and Testing of the Hominid Robot Charlie[J]. Journal of Field Robotics, 2017, 34(4):666-703.
[52] ARM P, ZENKL R, BARTON P, et al. SpaceBok:a Dynamic Legged Robot for Space Exploration[C]//International Conference on Robotics and Automation. Montreal, 2019:6288-6294.
[53] KOLVENBACH H, HAMPP E, BARTON P, et al. Towards Jumping Locomotion for Quadruped Robots on the Moon[C]//IEEE/RSJInternational Conference on Intelligent Robots and Systems(IROS). Macau, 2019:5459-5466.
[54] YANG F, DING X, PENG S. Bio-control of a Modular Design Robot:NOROS[C]//3rd ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots, ReMAR. Beijing, 2015:891-900.
[55] PENG S, DING X, YANG F, et al. Motion Planning and Implementation for the Self-recovery of an Overturned Multi-legged Robot[J]. Robotica, 2017, 35(5):1107-1120.
[56] DING Xilun, LI Kejia, XU Kun. Dynamics and Wheel's Slip Ratio of a Wheel-legged Robot in Wheeled Motion Considering the Change of Height[J]. Chinese Journal of Mechanical Engineering, 2012, 25(5):1060-1067.
[57] 庄红超, 高海波, 邓宗全, 等. 电驱动重载六足机器人关节转速分析方法[J]. 机械工程学报, 2013, 49(23):44-52. ZHUANG Hongchao, GAO Haibo, DENG Zong-quan, et al. Method for Analyzing Articulated Rotating Speeds of Heavy-duty Six-legged Robot[J]. Journal of Mechanical Engineering, 2013, 49(23):44-52.
[58] 刘宇飞, 丁亮, 高海波, 等. 基于激光测距的月球探测重载六足机器人自主避障控制[J]. 宇航学报, 2018, 39(12):1381-1390. LIU Yufei, DING Liang, GAO Haibo, et al. Autonomous Obstacle Avoidance Control of Heavy-duty Hexapod Robot for Lunar Exploration Based on Laser Ranging[J]. Journal of Astronautics, 2018, 39(12):1381-1390.
[59] 张志贤, 梁鲁, 果琳丽, 等. 轮腿式可移动载人月面着陆器概念设想[J]. 载人航天, 2016, 22(2):202-209. ZHANG Zhixian, LIANG Lu, GUO Linli, et al. Conceptual Design of Manned Lunar Lander with Wheel-legged Mobile System[J]. Manned Spaceflight, 2016, 22(2):202-209.
[1] 朱鹏, 章永年, 何春霞, 卢伟. 水田土壤上典型步态及其参数对足式机器人能耗的影响[J]. 中国机械工程, 2018, 29(12): 1485-1491.
[2] 邓子云1,2;章兢1,2;刘杨兵1,2;肖久如1. “天河一号”工业设计仿真云平台中间件研究[J]. 中国机械工程, 2015, 26(6): 766-772,798.
[3] 杨益飞, 潘伟, 朱熀秋. 垂直轴风力发电机技术综述及研究进展[J]. 中国机械工程, 2013, 24(5): 703-709.
[4] 曹奇, 成艾国, 周泽, 吴飞. 汽车座椅安全带固定点强度试验仿真模型改进[J]. 中国机械工程, 2012, 23(14): 1707-1711.
[5] 方兵;;沈润杰;何闻;郭吉丰;贾叔仕;. 压电陶瓷驱动的超精密快刀伺服系统的设计与研制[J]. J4, 2009, 20(22): 0-2653.
[6] 杨华勇;丁斐;欧阳小平;陆清;. 大型客机液压能源系统[J]. J4, 2009, 20(18): 0-2148.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05060958号 中国机械工程学会版权所有,未经同意请勿转载
中国机械工程学会/北京市海淀区首体南路9号主语国际4号楼11层,邮编100048
0