Please wait a minute...

中国机械工程  2021, Vol. 32 Issue (12): 1486-1493    DOI: 10.3969/j.issn.1004-132X.2021.12.013
  生物制造 本期目录 | 过刊浏览 | 高级检索 |
仿生跳跃机器人气动串联弹性关节的位置/刚度控制
沈双, 雷静桃, 张悦文
上海大学机电工程与自动化学院, 上海, 200444
Position and Stiffness Control of Pneumatic Series Elastic Joints for Bionic Jumping Robots
SHEN Shuang, LEI Jingtao, ZHANG Yuewen
School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444
全文: PDF(7155 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 设计了一种气动人工肌肉驱动的串联弹性关节,基于气动人工肌肉Chou模型,建立了串联弹性关节的动力学模型,推导出关节刚度,获得了关节刚度与肌肉内部气压、弹性体刚度的关系。设计反向传播(back propagation,BP)神经网络整定PID参数的BP-PID控制算法,开展了气动串联弹性关节的位置与刚度控制研究。仿真结果表明BP-PID控制优于PID控制,关节位置跟踪精度由0.58°变为0.10°,关节刚度跟踪精度从0.026 N·m/rad变为0.005 N·m/rad。实验结果表明关节位置跟踪平均误差由0.347°减小到0.117°,关节刚度跟踪平均误差从0.024 N·m/rad减小到0.019 N·m/rad。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
沈双
雷静桃
张悦文
关键词 仿生跳跃机器人串联弹性驱动器反向传播神经网络位置控制刚度控制    
Abstract:A kind of series elastic joints driven by pneumatic artificial muscle(PAM) was proposed. Based on the Chou model of PAM, a dynamic model of series elastic joints was established, and joint stiffness was derived. The relationship between the joint stiffness and internal pressure of PAM and stiffness of elastomer was obtained. The control algorithm of BP neural network tuning PID parameters(BP-PID) was designed, and the research on position and stiffness control of pneumatic series elastic joints was performed. The simulation results show that BP-PID control is better than PID control, tracking errors of joint positions are changed from 0.58° to 0.10°, and tracking errors of joint stiffness are changed from 0.026 N·m/rad to 0.005 N·m/rad. The experimental results show that the average tracking error of planning position signal is reduced from 0.347° to 0.117°, and the average tracking error of joint stiffness is reduced from 0.024 N·m/rad to 0.019 N·m/rad.
Key wordsbionic hopping robot    series elastic actuator    back propagation(BP) neural network    position control    stiffness control
收稿日期: 2020-10-20      出版日期: 2021-09-13
ZTFLH:  TP242  
基金资助:国家自然科学基金(51775323,51375289)
通讯作者: 雷静桃(通信作者),女,1970年生,教授、博士研究生导师。研究方向为机器人技术。发表论文80余篇。E-mail:jtlei2000@163.com.     E-mail: jtlei2000@163.com
作者简介: 沈双,男,1997年生,硕士研究生。研究方向为仿生机器人技术。E-mail:2522353578@qq.com。
引用本文:   
沈双, 雷静桃, 张悦文. 仿生跳跃机器人气动串联弹性关节的位置/刚度控制[J]. 中国机械工程, 2021, 32(12): 1486-1493.
SHEN Shuang, LEI Jingtao, ZHANG Yuewen. Position and Stiffness Control of Pneumatic Series Elastic Joints for Bionic Jumping Robots. China Mechanical Engineering, 2021, 32(12): 1486-1493.
链接本文:  
http://qikan.cmes.org/zgjxgc/CN/10.3969/j.issn.1004-132X.2021.12.013      或      http://qikan.cmes.org/zgjxgc/CN/Y2021/V32/I12/1486
[1] 王国彪, 陈殿生, 陈科位, 等. 仿生机器人研究现状与发展趋势[J]. 机械工程学报, 2015, 51(13):27-44. WANG Guobiao, CHEN Diansheng, CHEN Kewei, et al. The Current Research Status and Development Strategy on Biomimetic Robot[J]. Journal of Mechanical Engineering, 2015, 51(13):27-44.
[2] 葛文杰, 沈允文, 杨方. 仿袋鼠柔性跳跃机器人的驱动力特性研究[J]. 中国机械工程, 2006,27(8):857-861. GE Wenjie, SHEN Yunwen, YANG Fang. Research on the Driving Characteristics of Bionic Kangaroo-hopping Robot[J]. China Mechanical Engineering, 2006,27(8):857-861.
[3] 魏敦文, 葛文杰, 高涛. 仿生灵感下的弹性驱动器的研究综述[J]. 机器人, 2017, 39(4):541-550. WEI Dunwen, GE Wenjie, GAO Tao. Review of Elastic Actuator Research from Bionic Inspiration[J]. Robot, 2017, 39(4):541-550.
[4] PRATT G A, WILLIAMSON M M. Series Elastic Actuators[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Pittsburgh, 1995:399-406.
[5] ROBINSON D W, PRATT J E, PALUSKA D J, et al. Series Elastic Actuator Development for a Biomimetic Walking Robot[C]//IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Piscataway, 1999:561-568.
[6] ROBINSON D. Design and Analysis of Series Elasticity in Closed-loop Actuator Force Control[D]. Boston:Massachusetts Institute of Technology, 2000.
[7] PRATT J E, KRUPP B T. Series Elastic Actuators for Legged Robots[J]. Proceedings of SPIE:the International Society for Optical Engineering, 2004, 29(3):234-241.
[8] HUTTER M, REMY C D, SIEGWART R. Adaptive Control Strategies for Open-loop Dynamic Hopping[C]//IEEE International Conference on Intelligent Robots and Systems. Louis, 2009:154-159.
[9] HUTTER M, REMY C D, HOEPFLINGER M, et al. Efficient and Versatile Locomotion with Highly Compliant Legs[J]. IEEE Transactions on Mechatronics, 2013, 18(2):449-458.
[10] 马洪文, 王立权, 赵朋, 等. 串联弹性驱动器力驱动力学模型和稳定性分析[J]. 哈尔滨工程大学学报, 2012, 33(11):1410-1416. MA Hongwen, WANG Liquan, ZHAO Peng, et al. Research ofDynamic Model and Stability of a Series Elastic Actuator[J]. Journal of Harbin Engineering University, 2012, 33(11):1410-1416.
[11] 马洪文, 赵朋, 王立权, 等. 刚度和等效质量对SEA能量放大特性的影响[J]. 机器人, 2012, 34(3):275-281. MA Hongwen, ZHAO Peng, WANG Liquan, et al. Effect of Stiffiness and Equivalent Mass on Energy Amplification Characteristics of SEA[J]. Robot, 2012, 34(3):275-281.
[12] CHEN G, QI P, GUO Z, et al. Mechanical Design and Evaluation of a Compact Portable Knee-Ankle-Foot Robot for Gait Rehabilitation[J]. Mechanism and Machine Theory, 2016, 103:51-64.
[13] HALDANE D W, PLECNIK M M, YIM J K, et al. Robotic Vertical Jumping Agility via Series-elastic Power Modulation[J]. Science Robotics, 2016, 1(1):eaag 2048.
[14] PLECNIK M M, HALDANE D W, YIM J K, et al. Design Exploration and Kinematic Tuning of a Power Modulating Jumping Monopod[J]. Journal of Mechanisms and Robotics, 2017, 9(1):011009.
[15] HALDANE D W, YIM J K, FEARING R S. Repetitive Extreme-acceleration (14-g) Spatial Jumping with Salto-1P[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Vancouver, 2017:3345-3351.
[16] YIM J K, FEARING R S. Precision Jumping Limits from Flight-phase Control in Salto-1P[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Madrid, 2018:2229-2236.
[17] 吴伟男, 朱秋国, 吴俊, 等. 基于粒子群优化算法的单腿机器人膝踝协调运动控制[J]. 机械工程学报, 2017, 53(15):93-100. WU Weinan, ZHU Qiuguo, WU Jun, et al. Coordinated Motion Control between the Knee and Ankle Joints for One-legged Robot Based on Particle Swarm Optimization Algorithm[J]. Journal of Mechanical Engineering, 2017, 53(15):93-100.
[18] 朱坚民, 黄春燕, 雷静桃, 等.气动肌腱驱动的拮抗式仿生关节位置/刚度控制[J]. 机械工程学报, 2017, 53(13):64-74. ZHU Jianmin, HUANG Chunyan, LEI Jingtao, et al. Position/Stiffness Control of Antagonistic Bionic Joint Driven by Pneumatic Muscles Actuators[J]. Journal of Mechanical Engineering, 2017, 53(13):64-74.
[19] UGURLU B, FORNI P, DOPPMANN C, et al. Torque and Variable Stiffness Control for Antagonistically Driven Pneumatic Muscle Actuators via a Stable Force Feedback Controller[C]//IEEE/RSJ International Conference on Intelligent Robots & Systems. Hamburg, 2015:1633-1639.
[20] UGURLU B, FORNI P, DOPPMANN C, et al. Stable Control of Force, Position, and Stiffness for Robot Joints Powered via Pneumatic Muscles[J]. IEEE Transactions on Industrial Informatics, 2019, 15:6270-6279.
[21] 张道辉,赵新刚,韩建达, 等. 气动人工肌肉拮抗关节的力与刚度独立控制[J]. 机器人,2018,40(5):587-596. ZHANG Daohui, ZHAO Xingang, HAN Jianda, et al. Independent Force and Stiffness Control for Antagonistic Joint Driven by Pneumatic Artificial Muscles[J]. Robot, 2018, 40(5):587-596.
[22] CHOU C P, HANNAFORD B. Measurement and Modeling of Mckibben Pneumatic Artificial Muscle[J]. IEEE Transaction on Robotics and Automation, 1996, 12(1):90-102.
[23] ZHANG Daohui, ZHAO Xingang, HAN Jianda. Active Model-based Control for Pneumatic Artificial Muscle[J]. IEEE Transactions on Industrial Electronics, 2017, 64(2):1686-1695.
[24] 刘金琨. 先进PID控制及其MATLAB仿真[M]. 北京:电子工业出版社, 2016:317-327. LIU Jinkun. Advanced PID Control and MATLAB Simulation[M]. Beijing:Electronic Industry Press, 2016:317-327.
[25] CHEN Ziheng, LEI Jingtao, Cheng Liya, et al. Hopping Planning of the Bionic Leg Mechanism Driven by PAMs with Biarticular Muscle[J]. High Technology Letters, 2019, 25(4):408-416.
[1] 姚来鹏, 侯保林, 刘曦, 王茜. 基于非线性干扰观测器的自动弹仓终端滑模控制[J]. 中国机械工程, 2020, 31(15): 1787-1792,1797.
[2] 高强, 朱玉川. 基于均匀切换的并联数字阀控系统位置控制策略[J]. 中国机械工程, 2020, 31(12): 1461-1468,1480.
[3] 张晋, 薛雄伟, 寇成浩, 姚静, 孔祥东, 李昊. DN63位移随动式超高压比例插装阀的建模[J]. 中国机械工程, 2019, 30(20): 2424-2430,2438.
[4] 曹晓明1;郭宝峰1,2;王佩1;李瑶1;姚静1,2,3. 多级压力源液压切换的位置伺服控制系统[J]. 中国机械工程, 2017, 28(20): 2447-2454.
[5] 陆浩1;胡建华1;王云宽1;郑军1;秦晓飞2. 基于自适应微分跟踪器的位置伺服系统[J]. 中国机械工程, 2016, 27(21): 2915-2919.
[6] 史延雷;张明路;张小俊;白丰. 一种旋转型机器人柔性关节设计与分析[J]. 中国机械工程, 2016, 27(18): 2494-2500.
[7] 刘涛1,2;宋涛1,2;姚辉1,2. 泵缸复合结构新型动态流量计[J]. 中国机械工程, 2016, 27(15): 2060-2063,2068.
[8] 谢苗1;刘治翔1;池城2;毛君1. 巷道超前支架的电液伺服位置压力复合控制方法[J]. 中国机械工程, 2016, 27(02): 239-245.
[9] 何福本;梁延德;孙捷夫;郭超. 基于SEA的机器人仿肌弹性驱动关节研究[J]. 中国机械工程, 2014, 25(7): 900-905.
[10] 高钦和1;刘志浩1;牛海龙1;唐媛丽2. 高速开关阀控液压缸的位置控制[J]. 中国机械工程, 2014, 25(20): 2775-2781.
[11] 郭宇飞;侯保林. 自行火炮弹丸传输机械臂的动力学建模与位置控制[J]. 中国机械工程, 2014, 25(15): 2076-2080.
[12] 张礼兵1, 2, 游有鹏1, 吴婷1, 2. 数控位置伺服系统控制策略研究[J]. 中国机械工程, 2012, 23(14): 1693-1697.
[13] 刘清, 王太勇, 董靖川, 刘清建, 李勃. 基于ESO及NTD的PMSM无机械传感器位置控制[J]. 中国机械工程, 2012, 23(10): 1212-1215.
[14] 李树军;张余;孟巧玲;. 任意分布参数的车辆半轴的可靠性稳健设计[J]. J4, 2009, 20(21): 0-2525.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05060958号 中国机械工程学会版权所有,未经同意请勿转载
中国机械工程学会/北京市海淀区首体南路9号主语国际4号楼11层,邮编100048
0