Please wait a minute...

机械工程学报  2018, Vol. 54 Issue (24): 98-110    DOI: 10.3901/JME.2018.24.098
  运载工程 本期目录 | 过刊浏览 | 高级检索 |
无人帆船研究现状与展望
俞建成1, 孙朝阳1,2, 张艾群1
1. 中国科学院沈阳自动化研究所机器人学国家重点实验室 沈阳 110016;
2. 中国科学院大学 北京 100049
Research Status and Prospect of Autonomous Sailboats
YU Jiancheng1, SUN Zhaoyang1,2, ZHANG Aiqun1
1. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016;
2. University of Chinese Academy of Sciences, Beijing 100049
全文: PDF(372 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 无人帆船是一种以海洋环境能源为驱动,可以胜任远海作业、具有实时数据传输功能和实时定位功能、低运营成本的多用途新型海气界面移动观测平台。其以风力作为航行驱动力,以太阳能电池板等获取电能供给控制系统和传感器使用。与传统的海洋移动观测平台相比,可以实现低成本的长航时、大范围、高时空分辨率海洋观测,尤其是海气界面的海表气象数据和次表层海洋数据等海洋环境要素的精细观测。可以为全球气候变化、海洋酸化、海洋碳循环、极地气-海-冰相互作用等前沿热点问题的研究提供数据。对国际上具有代表性的无人帆船进行介绍分析,对无人帆船的帆船结构、运动机理与航行控制等技术的研究现状进行综述,并对无人帆船的发展趋势和关键技术进行讨论。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract:Autonomous sailboat is a new kind of multipurpose low cost operated marine mobile observation platform which is powered by marine environmental energyand can be competent to pelagic operations, has the functions of real-time data transmission and real-time positioning.It uses wind power as a driving force, solar panels or other devicesare used to generate electricity to provide power for control system and sensors.Compared with the traditional marine mobile observation platforms,the marine observation of long-endurance, large range and high spatial and temporal resolution observation especially theair-sea interfacemarine environmental elementobservationsuch assea surface layer meteorological dataand subsurface layer marine datacan be realized with low cost with the help of autonomous sailboat.The collected datacan be provided for the front hot topics research such as simulation of global climate change, ocean acidification, ocean carbon cycle and air-sea-ice interaction, etc.Representativeautonomous sailboats are introduced and analyzed, the structures of autonomous sailboats, theresearch status of movement mechanism and motion control method are reviewed anddevelopment trends and key technology of autonomous sailboats are discussed.
收稿日期: 2018-02-23     
:  U674  
  U674  
基金资助:中国科学院沈阳自动化研究所蒋新松创新基金(Y8F7010701)、国家自然科学基金(U1709202)。
作者简介: 俞建成,男,1976年出生,博士,研究员,博士研究生导师。主要研究方向为水下机器人导航、控制、载体设计。E-mail:yjc@sia.cn;孙朝阳,男,1993年出生,博士研究生。主要研究方向为海洋机器人环境能源收集与利用技术、无人帆船基础技术研究。E-mail:sunzhaoyang@sia.cn;张艾群,男,1959年出生,学士,研究员,博士研究生导师。主要研究方向为水下机器人总体技术,特种水下机器人,深海及极端环境水下机器人。E-mail:zaq@sia.cn
引用本文:   
俞建成, 孙朝阳, 张艾群. 无人帆船研究现状与展望[J]. 机械工程学报, 2018, 54(24): 98-110.
YU Jiancheng, SUN Zhaoyang, ZHANG Aiqun. Research Status and Prospect of Autonomous Sailboats. Journal of Mechanical Engineering, 2018, 54(24): 98-110.
链接本文:  
http://qikan.cmes.org/jxgcxb/CN/10.3901/JME.2018.24.098      或      http://qikan.cmes.org/jxgcxb/CN/Y2018/V54/I24/98
[1] 孙松, 孙晓霞. 对我国海洋科学研究战略的认识与思考[J]. 中国科学院院刊, 2016, 31(12):1285-1292. SUN Song, SUN Xiaoxia. Future ocean and our research strategy[J]. Bulletin of Chinese Academy of Science, 2016, 31(12):1285-1292.
[2] 贾永君,林明森,张有广. 自主海洋卫星遥感技术进展与发展方向[J]. 海洋技术学报, 2015, 34(3):21-25. JIA Yongjun, LIN Mingsen, ZHANG Youguang. Progress and development orientation of independent oceanic satellite remote sensing technology in China[J]. Journal of Ocean Technology, 2015, 34(3):21-25.
[3] 陈质二,俞建成,张艾群. 面向海洋观测的长续航力移动自主观测平台发展现状与展望[J]. 海洋技术学报, 2016, 35(1):122-130. CHEN Zhier, YU Jiancheng, ZHANG Aiqun. Overview on observation-oriented unmanned marine vehicleswith high cruising ability:development status and prospect[J]. Journal of Ocean Technology, 2016, 35(1):122-130.
[4] 俞建成,刘世杰,金文明. 深海滑翔机技术与应用现状[J]. 工程研究-跨学科视野中的工程, 2016, 8(2):208-216. YU Jiancheng, LIU Shijie, JIN Wenming. The present state of deep-sea underwater glider technologies and applications[J]. Journal of Engineering Studies, 2016, 8(2):208-216.
[5] 李硕,唐元贵,黄琰,等. 深海技术装备研制现状与展望[J]. 中国科学院院刊, 2016, 31(12):1316-1325. LI Shuo, TANG Yuangui, HUANG Yan, et al. Review and prospect for Chinese deep-sea technology and equipment[J]. Bulletin of Chinese Academy of Science, 2016, 31(12):1316-1325.
[6] Liquid Robotics. Energy harvesting ocean robot[EB/OL] (2017-12-04)[2018-01-20]. https://www.liquid-robotics.com/platform/how-it-works/.
[7] SILVAA, MATOSA, SOARESC, et al. Measuring underwater noise with very high endurance surface and underwater autonomous vehicles[C]//Proceedings of the OCEANS 2013 MTS-IEEE Conference, San Diego. IEEE, 2013, 155(2):1-6.
[8] JAIMEA J, JAIME S, CALVO O. Fuzzy control of a sailboat[J]. International Journal of Approximate Reasoning, 1997, 16(3-4):359-375.
[9] ELKAIMGH. System Identification for precision control of a wing sailed GPS-guided catamaran[D]. Stanford, America:Stanford University, 2002.
[10] The New York Times. No Sailors Needed:Robot sailboats scour the oceans for data[EB/OL]. (2016-09-04)[2018-01-10]. https://www.nytimes.com/2016/09/05/technology/no-sailorsneeded-robot-sailboats-scour-the-oceans-for-data.html.
[11] 俞建成,孙朝阳,张艾群. 海洋机器人环境能源收集利用技术现状[J]. 机器人, 2018, 40(1):89-101. YU Jiancheng, SUN Zhaoyang, ZHANG Aiqun. The present status of environmental energy harvesting and utilization technology of marine robots[J]. ROBOT, 2018, 40(1):89-101.
[12] ELKAIM G H, BOYCEJrCO L. Experimental validation of GPS-based control of an unmanned wing-sailed catamaran[C]//ION Global Navigation Satellite Systems Conference, ION GNSS. 2007:1950-1956.
[13] Harbor Wing Technology. HWT X-3 Production vessel design[EB/OL].[2017-12-29]. http://www.harborwingtech.com/HWT-X-3-Production-Design.htm.
[14] Ocean Aero. SubmaranTM S10:Wind and solar-powered freedom to go further and faster[EB/OL].[2017-10-22]. http://www.oceanaero.us/Ocean-Aero-Submaran.
[15] 搜狐军事. 美国军民两用"无人水面和水下航行器" Submaran S10[EB/OL]. (2017-09-20)[2017-10-25]. https://www.sohu.com/a/193457852_726570.
[16] Ocean Aero. SubmaranTM SaaS[EB/OL].[2017-12-29]. http://www.oceanaero.us/Submaran-SaaS.
[17] ZHANG Dongxiao, CRONIN MF, LINXiaopei, et al. WBC Series:Observing air-sea interaction in the western boundary currents and their extension regions:Considerations for OceanObs 2019[J/OL](2017-11-10)[2018-9-12]. https://www.us-ocb.org/wbc-series-observingair-sea-interaction-in-the-western-boundary-currents-andtheir-extension-regions-considerations-for-oceanobs-2019/
[18] Saildrone. Data Capabilities[EB/OL].[2018-09-20]. https://www.saildrone.com/
[19] Saildrone. Saildrone 2016[EB/OL].[2017-09-29]. http://saildrone.com/#Technology.
[20] COKELET E D, MEINIG C, LAWRENCE-SLAVAS N, et al. The use of Saildrones to examine spring conditions in the Bering sea[C]//Oceans'15 MTS/IEEE, Washington. USA:IEEE, 2016:1-7.
[21] CROSS J N, MORDY C W, TABISOLA H M, et al. Innovative technology development for Arctic Exploration[C]//OCEANS'15 MTS/IEEE. Washington. USA:IEEE, 2015:1-8.
[22] ENET&CIWEEK. Saildrone, Inc.在B系列融资中筹集6000万美元资金[EB/OL] (2018-5-15)[2018-8-25]. http://www.enet.com.cn/article/2018/0515/A20180515047298.html
[23] Autonomous Marine Systems[EB/OL].[2018-01-03]. http://www.automarinesys.com/
[24] 凤凰科技. 自动驾驶帆船, 有史以来第一次成功横渡大西洋[EB/OL] (2018-9-6)[2018-9-22]. http://tech.ifeng.com/a/20180906/45154306_0.shtml
[25] Laerling. Laerling[EB/OL].[2017-11-03]. http://www.laerling.nl.
[26] Roboat. ASV ROBOAT[EB/OL].[2017-07-18]. http://www.roboat.at/technologie/technologie/.
[27] DOMINGUEZ-BRITO A C, VALLE-FERNANDEZ B, CABRERA-GAMEZ J, et al. A-TIRMA G2:an oceanic autonomous sailboat[M]//Robotic Sailing 2015. Springer, Cham, 2016:3-13.
[28] MILLER P, SAUZE C, NEAL M. Development of ARRTOO:A long-endurance, hybrid-powered, oceanographic research vessel[M]//Robotic Sailing 2013. Springer International Publishing, Cham, 2014:53-65.
[29] Ecole Nationale SupErieure de Techniques AvancEes Bretagne. Autonomous Sailing Boat VAIMOS:autonomous, environmentally friendly and practical.[EB/OL]. (2012-01-17)[2018-01-02]. http://www.enstabretagne.eu/index.php/actualite/autonomous-sailing-boatvaimos/.
[30] Shuttle worth Desing. Mayflower Autonomous Research Ship[EB/OL].[2017-11-24]. http://www.shuttleworthdesign.com/gallery.php?boat=MARS.
[31] JULLIAN C. Protei, a fleet of autonomous sailboats to clean the ocean[EB/OL]. (2014-11-18)[2017-12-3]. http://www.makery.info/en/2014/11/18/protei-une-armada-devoiliers-autonomes-pour-nettoyer-les-oceans/
[32] APROSIN K, TAVLINTCEV A, SEMENENKO S, et al. Kite sailing platform mathematical model and stabilization[M]//Robotic Sailing 2015. Springer International Publishing, 2016:59-73.
[33] World Sailing. Classes and Equipment[EB/OL].[2017-09-10]. http://www.sailing.org/isaf/home.php.
[34] FERNANDES P C, MARQUES M, LOBO V. Barlavento-considerations about the design of an autonomous sailboat[M]//Robotic Sailing 2016. Springer International Publishing, Cham, 2017:19-30.
[35] ERIKSSON R, FRIBE, A. Challenges for autonomous sailing robots[C]//14th International Conference on Computer and IT Applications in the Maritime Industries, COMPIT15 Ulrichshusen, 2015:11-13.
[36] BAKER R, KAMBOURIAN L, HAJARIAN S, et al. Design and development of a self-stabilizing, autonomous sailboat with zero-net stored-energy use[M]//Robotic Sailing 2015. Springer, Cham, 2016:39-57.
[37] AUGENSTEIN T, SINGH A, MILLER J, et al. Using a controlled sail and tail to steer an autonomous sailboat[M]//Robotic Sailing 2016. Springer International Publishing, Cham, 2017:91-103.
[38] University of British Columbia. UBC SAILBOT 2017 Update[EB/OL]. (2017-01-14)[2017-11-24]. https://ubcsailbot.org/2017/01/14/2017-update-ada-2-0-progress/.
[39] HEJiaxi, XIAO Lin, JOUFFROY Jerome. Towards heading control of an autonomous sailing platform through weight balancing[J]. IFAC Proceedings Volumes, 2012, 45(27):392-397.
[40] MILLER P, HAMLET M, SAUZE C, et al. MaxiMOOP:A multi-role, low cost and small sailing robot platform[M]//Robotic Sailing 2014. Springer, Cham, 2015:17-30.
[41] 金鸿章,高妍南,周生彬. 基于能量优化的海洋机器人航向与横摇自适应终端滑模综合控制[J]. 机械工程学报, 2011, 47(15):37-43. JIN Hongzhang, GAO Yannan, ZHOU Shengbin. Adaptive terminal-sliding-mode combination control for heading and rolling of marine robot based on energy optimization[J]. Journal of Mechanical Engineering, 2011, 47(15):37-43.
[42] 杨少龙. 无人操纵帆船设计及运动控制研究[D]. 大连:大连海事大学, 2013. YANGShaolong. Study on autonomous sailing boat design and motion control[D]. Dalian:Dalian Maritime University, 2013.
[43] STELZER R, DALMAU D E. A Study on potential energy savings by the use of a balanced rig on a robotic sailing boat[M]//Robotic Sailing 2012. Springer Berlin Heidelberg, 2013:87-93.
[44] ESTRUP P V S. Rigging and sail system for sailboat:U.S.Patent 4, 911, 093[P]. 1990-3-27.
[45] LIAN G, WISMER S, BOEHL S, et al. Design and construction of the autonomous sailing vessel AVALON[C]//Proceedings of The World Robotic Sailing Championship and International Robotic Sailing Conference. EidgenossischeTechnischeHochschule Zurich, 2009.
[46] BRIERE Y. Iboat:An autonomous robot for long-term offshore operation[C]//Electrotechnical Conference, 2008. MELECON 2008. The 14th IEEE Mediterranean. IEEE, 2008:323-329.
[47] MURRAYDAVIS H, BENNETT A. Quantitative analysis of various sail luffing sensing methods[M]//Robotic Sailing 2015. Springer International Publishing, Cham, 2016:151-161.
[48] MURRAYDAVIS H, BARRETT D. Piezoelectric vibrational sensor for sail luffing detection on robotic sailboats[M]//Robotic Sailing 2014. Springer, Cham, 2015:87-93.
[49] National Aeronautics and Space Administration. Aerodynamic center-ac[EB/OL].[2017-08-15]. http://www.grc.nasa.gov/WWW/K-12/airplane/ac.html.
[50] ELKAIM G H. The Atlantis Project:A GPS-guided wing-sailed autonomous catamaran[J]. Navigation, 2006, 53(4):237-247.
[51] ELKAIMGH. Autonomous surface vehicle free-rotating wing sail section design and configuration analysis[J]. Journal of Aircraft, 2008, 45(6):1835-1852.
[52] ELKAIM G H, BOYCE CO L. Experimental aerodynamic performance of a self-trimming wing-sail for autonomous surface vehicles[J]. IFAC Proceedings Volumes, 2007, 40(17):271-276.
[53] NEAL M, SAUZE C, THOMAS B, et al. Technologies for autonomous sailing:wings and wind sensors[J]. Proceedings of the 2nd IRSC, Matosinhos, Portugal, 2009:6-12.
[54] CRUZ N A, ALVES J C, GUEDES T, et al. Integration of wind propulsion in an electric ASV[M]//Robotic Sailing 2015. Springer International Publishing, Cham, 2016:15-27.
[55] SAUZE C, NEAL M. An autonomous sailing robot for ocean observation[J]. Proceedings of TAROS, 2006:190-197.
[56] STELZER R, PROLL T, JOHN R I. Fuzzy logic control system for autonomous sailboats[C]//IEEE International Fuzzy Systems Conference. IEEE, 2007:1-6.
[57] STELZER R, PROLL T. Autonomous sailboat navigation for short course racing[J]. Robotics and Autonomous Systems, 2008, 56(7):604-614.
[58] GOMES L, COSTA A, FERNANDES D, et al. Improving instrumentation support and control strategies for autonomous sailboats in a regatta contest[M]//Robotic Sailing 2016. Springer International Publishing, Cham, 2017:45-56.
[59] GAL O. Multi-agents decision making concept for multi-missions applications in marine environments[M]//Robotic Sailing 2013. Springer International Publishing, Cham, 2014:127-136.
[60] STELZER, R. Autonomous sailboat navigation[D]. De Montfort University, The United Kingdom, 2012.
[61] LANGBEIN, J. STELZER, R, FRUHWIRTH, T. A rule-based approach to long-term routing for autonomous sailboats[J]. Robotic Sailing, Springer, Berlin, Heidelberg, 2011:195-204.
[62] ERCKENSH, BUSSERGA, PRADALIER, C, et al. Navigation strategy and trajectory following controller for an autonomous sailing vessel[J]. IEEE Robotics and Automation Magazine, 2010, 17(1):45-54.
[63] PHILPOTTA. MASONA. Optimizing yacht routes under uncertainty[C]//The 15th Cheasapeake Sailing Yacht Symposium. 2001, 176-183.
[64] PETRES C, ROMERO-RAMIREZ M A, PLUMET F. A potential field approach for reactive navigation of autonomous sailboats[J]. Robotics and Autonomous Systems, 2012, 60(12):1520-1527.
[65] GIBBONS-NEFF P, MILLER P. Route planning for a Micro-transat voyage[J]. Robotic Sailing, Springer, Berlin, Heidelberg, 2011:183-194.
[66] 康梦萁,许劲松,徐建云,等. 无人帆船短途路径规划研究[J]. 船舶工程, 2016, 38(9):1-5. KANG Mengqi, XU Jingsong, XU Jianyun, et al. Study of local route planning of autonomous sailboat[J]. Ship Engineering, 2016, 38(9):1-5.
[67] KANGMengqi, XUJingsong, XUJianyun, et al. Autonomous sailboat local route planning[M]//Robotic Sailing 2016. Springer International Publishing, Cham, 2017:33-43.
[68] JAWAD A E, RAYMOND B, ROUAULT E, et al. Complex robot behavior creation using vector fields[M]//Robotic Sailing 2016. Springer International Publishing, Cham, 2017:57-66.
[69] JAULIN L, BARS F L. An interval approach for stability analysis:application to sailboat robotics[J]. IEEE Transactions on Robotics, 2013, 29(1):282-287.
[70] SAUZE C, NEAL M. A raycast approach to collision avoidance in sailing robots[C]//International Robotic Sailing Conference, 2010:26-33.
[71] GUO Yan, ROMERO M, LENG SH, et al. Reactive path planning for autonomous sailboat using an omni-directional camera for obstacle detection[C]//Mechatronics (ICM), 2011 IEEE International Conference on. IEEE, 2011:445-450.
[72] WIRZ J, TRANZATTO M, LINIGER A, et al. AEOLUS, the ETH autonomous model sailboat[M]//Robotic Sailing 2015. Springer International Publishing, Cham, 2016:103-112.
[73] ALVES J C, CRUZ N A. AIS-Enabled collision avoidance strategies for autonomous sailboats[M]//Robotic Sailing 2015. Springer International Publishing, Cham, 2016:77-87.
[74] STELZER R, JAFARMADAR K, HASSLER H, et al. A reactive approach to obstacle avoidance in autonomous sailing[J]. 2010.
[75] International Maritime Organization. Convention on the International Regulations for Preventing Collisions at Sea, 1972(COLREGs)[EB/OL].[2017-10-07]. http://www.imo.org/en/About/Conventions/ListOfConventions/Pages/COLREG.aspx.
[76] SAOUD H, HUA M D. Modeling and control design of a robotic sailboat[M]//Robotic Sailing 2013. Springer, Cham, 2014:95-110.
[77] CRUZ N A, ALVES J C. Navigation performance of an autonomous sailing robot[C]//Oceans-St. John's. IEEE, 2014:1-7.
[78] WANGQian, KANGMengqi, XUJingsong, et al. Autonomous sailboat track following control[M]//Robotic Sailing 2015. Springer International Publishing, Cham, 2016:125-136.
[79] YEHE C. BINJ C. Fuzzy control for self-steering of a sailboat[C]//Intelligent Control and Instrumentation. SICICI'92. Proceedings, Singapore International Conference on. IEEE, 1992, 2:1339-1344.
[80] CRUZNA, ALVESJC. Auto-heading controller for an autonomous sailboat[C]//OCEANS 2010 IEEE-Sydney. IEEE, 2010:1-6.
[81] TRANZATTO M, LINIGER A, GRAMMATICO S, et al. The debut of Aeolus, the autonomous model sailboat of ETH Zurich[C]//OCEANS 2015-Genova. IEEE, 2015:1-6.
[82] ALVES J C, CRUZ N A. Fast-an autonomous sailing platform for oceanographic missions[C]//Oceans 2008. Piscataway, NJ, USA:IEEE, 2008:1-7.
[83] MELIN J, DAHL K, WALLER M. Modeling and control for an autonomous sailboat:A case study[M]//Robotic Sailing 2015. Springer, Cham, 2016:137-149.
[84] CHEN Zhier, YU Jiancheng, ZHANG Aiqun, et al. Design and analysis of folding propulsion mechanism for hybrid-driven underwater gliders[J]. Ocean Engineering, 2016, 119:125-134.
[85] ELKAIM G H, BOYCE CO. An energy scavenging autonomous surface vehicle for littoral surveillance[C]//ION Global Navigation Satellite Systems Conference. 2008:11.
[86] 王健,罗潇,刘旌扬,等. 复合动力超长续航无人艇系统的设计与实现[J]. 船舶工程, 2017, 39(05):48-52, 80. WANG Jian, LUO Xiao, LIU Jingyang, et al. Design and implementation of ultra-long-endurance USV with multiple power source[J]. Ship engineering,2017,39(05):48-52, 80.
[87] TOWNSEND N. Self powered autonomous underwater vehicles (AUVs):results from a gyroscopic energy scavenging prototype[J]. IET Renewable Power Generation, 2016:10(8)1078-1086.
[88] RYNNE P F, VON ELLENRIEDER K D. Unmanned autonomous sailing:current status and future role in sustained ocean observations[J]. Marine Technology Society Journal, 2009, 43(1):21-30.
[89] PLUMET F, PETRES C, Romero-Ramirez M A, et al. Toward an autonomous sailing boat[J]. IEEE Journal of Oceanic Engineering, 2015, 40(2):397-407.
[90] 王树杰,谭俊哲,陈震. 智能无人帆船及其控制方法:106892076[P]. 2017. WANG Shujie, TANJunzhe, CHEN Zhen. Intelligent Autonomous Sailboat and control method:China, 106892076[P]. 2017.
[91] RYNNEP, VON ELLENRIEDERK. Unmanned autonomous sailing:Current status and future role in sustained ocean observations[J]. Marine Technology Society Journal, 2009, 43(1):21-30.
[92] ANTHIERENS C, PAULY E, JEAY F. MARIUS:A sailbot for sea-sailing[M]//Robotic Sailing 2013. Springer, Cham, 2014:3-12.
[93] SAUZE C, NEAL M. A neuro-endocrine inspired approach to long term energy autonomy in sailing robots[J]. Proceedings of TAROS (Towards Autonomous Robotic Systems), 2010:255-262.
[1] 刘占生, 马瑞贤, 杨帆, 张广辉. 基于流固耦合作用的柔性体流噪声降噪机理研究[J]. 机械工程学报, 2016, 52(10): 176-184.
[2] 谢义水. 舰载电子设备的三防设计[J]. , 2007, 43(1): 83-86.
[3] 徐荣武;何琳;章林柯;贲可荣. 小样本条件下潜艇机械噪声源的识别[J]. , 2008, 44(7): 151-160.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05060958号 中国机械工程学会版权所有,未经同意请勿转载
中国机械工程学会/北京市海淀区首体南路9号主语国际4号楼11层,邮编100048
0