Please wait a minute...

机械工程学报  2019, Vol. 55 Issue (1): 189-215    DOI: 10.3901/JME.2019.01.189
  制造工艺与装备 本期目录 | 过刊浏览 | 高级检索 |
面向航空发动机的镍基合金磨削技术研究进展
丁文锋, 苗情, 李本凯, 徐九华
南京航空航天大学机电学院 南京 210016
Review on Grinding Technology of Nickel-based Superalloys Used for Aero-engine
DING Wenfeng, MIAO Qing, LI Benkai, XU Jiuhua
College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016
全文: PDF(131608 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 磨削加工是制造航空发动机镍基合金零件的重要方法。为进一步提高镍基合金磨削加工的材料去除效率、提升工件表面质量,国内外学者开展了诸多基础理论与工艺探索工作。在概述镍基合金材料磨削加工技术发展过程的基础上,全面总结了国内外学者在镍基合金材料磨削去除机理、磨削工艺特性、磨削加工新方法等方面的主要研究成果,并对镍基合金磨削加工技术的难点与发展趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract:Grinding plays the critical role in manufacturing the aero-engine components composed of nickel-based superalloys. In order to further improve the material removal rate and workpiece quality, a large number of researches on grinding technology of nickel-based superalloys are conducted in terms of the fundamental theory and process expending. In this review article, the basic principle and development process of grinding are firstly introduced briefly. Then, the technologies are reviewed detailed concerning the material removal mechanism, the grinding characteristics, and the novel application type of grinding for nickel-based superalloys. Finally, the development trends during grinding of nickel-based superalloys are proposed as well as the difficulties in grinding of such materials.
收稿日期: 2018-02-22     
:  TG4  
基金资助:国家自然科学基金(51775275)、江苏省研究生培养创新工程(KYCX17_0245)和南京航空航天大学博士论文创新与创优基金(BCXJ17-04)资助项目。
通讯作者: 丁文锋(通信作者),男,1978年出生,博士,教授,博士研究生导师。主要从事难加工材料高效精密磨削技术与应用研究。E-mail:dingwf2000@vip.163.com   
作者简介: 苗情,男,1987年出生,博士研究生。主要从事航空发动机镍基合金叶片磨削加工研究。E-mail:qingmiao@nuaa.edu.cn
引用本文:   
丁文锋, 苗情, 李本凯, 徐九华. 面向航空发动机的镍基合金磨削技术研究进展[J]. 机械工程学报, 2019, 55(1): 189-215.
DING Wenfeng, MIAO Qing, LI Benkai, XU Jiuhua. Review on Grinding Technology of Nickel-based Superalloys Used for Aero-engine. Journal of Mechanical Engineering, 2019, 55(1): 189-215.
链接本文:  
http://qikan.cmes.org/jxgcxb/CN/10.3901/JME.2019.01.189      或      http://qikan.cmes.org/jxgcxb/CN/Y2019/V55/I1/189
[1] EZUGWU E O. Key improvements in the machining of difficult-to-cut aero-space superalloys[J]. International Journal of Machine Tools and Manufacture,2005,45:1353-1367.
[2] POLLOCK T M,TIN S. Nickel-based superalloys for advanced turbine engines:chemistry,microstructure and properties[J]. Journal of Propulsion and Power,2006,22:361-374.
[3] M'SAOUBI R,AXINTE D,SOO S L,et al. High performance cutting of advanced aerospace alloys and composite materials[J]. CIRP Annals-Manufacturing Technology,2015,64:557-580.
[4] 《中国航空材料手册》编辑委员会.中国航空材料手册[M].北京:中国标准出版社,2002. Editorial Board of China Aeronautical Materials Handbook. China aeronautical materials handbook[M]. Beijing:Standards Press of China,2002.
[5] 黄乾尧,李汉康. 高温合金[M]. 北京:冶金工业出版社,2000. HUANG Qianyao,LI Hankang. The supearlloys[M]. Beijing:Metallurgical Industry Press,2000.
[6] 王建明,杨舒宇. 镍基铸造高温合金[M]. 北京:冶金工业出版社,2014. WANG Jianming,YANG Shuyu. Nickel-based casting superalloys[M]. Beijing:Metallurgical Industry Press,2014.
[7] 陶春虎,张兵,张卫方,等. 定向凝固高温合金的再结晶[M]. 北京:国防工业出版社,2014. TAO Chunhu,ZHANG Bing,ZHANG Weifang,et al. Recrystallization of directionally solidified superalloy[M]. Beijing:National Defence Industry Press,2014.
[8] REED R C. The superalloys:Fundamentals and applications[M]. New York:Cambridge University Press,2006.
[9] 孙晓峰,金涛,周亦胄,等. 镍基单晶高温合金研究进展[J]. 中国材料进展,2012,31(12):1-9. SUN Xiaofeng,JIN Tao,ZHOU Yizhou,et al. Research progress of nickel-base single crystal superalloys[J]. Materials China,2012,31(12):1-9.
[10] 任敬心,康仁科,王西彬. 难加工材料磨削技术[M]. 北京:电子工业出版社,2011. REN Jingxin,KANG Renke,WANG Xibin. Grinding technology of difficult-to-machine materials[M]. Beijing:Electronic Industry Press,2011.
[11] 徐西鹏,徐鸿钧,李迎,等. K417航空叶片材料缓进深磨烧伤特征及烧伤程度判别[J]. 航空学报,1993,14(12):614-620. XU Xipeng,XU Hongjun,LI Ying,et al. Evaluation and characteristics of workpiece burn during creep feed grinding of superalloy K417 for vanes used in aeronautical industry[J]. Acta Aeronautica et Astronautica Sinica,1993,14(12):614-620.
[12] 任敬心,华定安. 磨削原理[M]. 北京:电子工业出版社,2011. REN Jingxin,HUA Dingan. Principle of grinding[M]. Beijing:Electronic Industry Press,2011.
[13] 李峰. 镍基高温合金高效磨削砂轮磨损的研究[D]. 南京:南京航空航天大学,2012. LI Feng. Wear of grinding wheels in high efficiency grinding of nickel based superalloy[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2012.
[14] SUTOWSKI P,SWIECIK R. The estimation of machining results and efficiency of the abrasive electro-discharge grinding process of Ti6Al4V titanium alloy using the high-frequency acoustic emission and force signals[J]. International Journal of Advanced Manufacturing Technology,2018,94:1263-1282.
[15] FEDOROV S,SWE M H,KAPTANOV A,et al. Wear of carbide inserts with complex surface treatment when milling nickel alloy[J]. Mechanics and Industry,2017,18(7):710.
[16] ZHAO Y J,LI H N,ZHU L D,et al. Machined brittle material surface in grinding:Modeling,experimental validation,and image-processing-based surface analysis[J]. International Journal of Advanced Manufacturing Technology,2017,93:2875-2894.
[17] LI Z P,ZHANG F H,ZHANG Y,et al. Experimental investigation on the surface and subsurface damages characteristics and formation mechanisms in ultra-precision grinding of SiC[J]. International Journal of Advanced Manufacturing Technology,2017,92:2677-2688.
[18] ZHANG Z Y,DU Y F,WANG B,et al. Nanoscale wear layers on silicon wafers induced by mechanical chemical grinding[J]. Tribology Letters,2017,65:132-145.
[19] ZHOU HX,YUAN BY,LYU JL,et al. A novel approach of deposition for uniform diamond films on circular saw blades[J]. Plasma Science and Technology,2017,19:UNSP 115502.
[20] CHEN CCA,GUPTA A. Modeling and analysis of wire motion during rocking mode diamond wire sawing of mono-crystalline alumina oxide wafer[J]. International Journal of Advanced Manufacturing Technology,2018,95:3453-3463.
[21] ADIBI H,ESMAEILI H,REZAEI S M. Study on minimum quantity lubrication (MQL) in grinding of carbon fiber-reinforced SiC matrix composites (CMCs)[J]. International Journal of Advanced Manufacturing Technology,2018,95:3753-3767.
[22] 徐正扬. 发动机叶片精密电解加工关键技术研究[D]. 南京:南京航空航天大学,2008. XU Zhengyang. Key technologies research on precision turbine blade ECM[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2008.
[23] 王建业,林苏文. 叶片电解加工技术的新发展[J]. 航空制造技术,1998(6):17-20. WANG Jianye,LIN Suwen. New development of blade ECM technology[J]. Aeronautical Manufacturing Technology,1998(6):17-20.
[24] 徐庆. 整体叶盘多通道电解加工关键技术研究[D]. 南京:南京航空航天大学,2011. XU Qing. Key Technologies Research on electrochemical machining of blisk multi-tunnels[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2011.
[25] KLOCKE F,WELLING D,DIECKMANN J,et al. Developments in Wire-EDM for the manufacturing of fir tree Slots in turbine discs made of Inconel 718[J]. Key Engineering Materials,2012,504-506:1177-1182.
[26] 陶云亚,薛伟鹏,唐洪飞,等. 激光增材制造技术在涡轮叶片中的应用[J]. 燃气涡轮试验与研究,2016,29:44-55. TAO Yunya,XUE Weipeng,TANG Hongfei,et al. Application of laser additive manufacturing technology in turbine blade and vane[J]. Gas Turbine Experiment and Research,2016,29:44-55.
[27] 张小伟. 金属增材制造技术在航空发动机领域的应用[J]. 航空动力学报,2016,31(1):10-14. ZHANG Xiaowei. Application of metal additive manufacturing in aero-engine[J]. Journal of Aerospace Power,2016,31(1):10-14.
[28] WELLING D. Results of surface integrity and fatigue study of Wire-EDM compared to broaching and grinding for demanding jet engine components made of Inconel 718[J]. Procedia CIRP,2014,13:339-344.
[29] KLOCKE F,ZEIS M,KLINK A,et al. Experimental research on the electrochemical machining of modern Titanium-and Nickel-based alloys for aero engine components[J]. Procedia CIRP,2013,6:369-373.
[30] SOO S L,ANTAR M T,ASPINWALL D K,et al. The effect of wire electrical discharge machining on the fatigue life of Ti-6Al-2Sn-4Zr-6Mo aerospace alloy[J]. Procedia CIRP,2013,6:215-219.
[31] KLOCKE F,KLINK A,VESELOVA D,et al. Turbomachinery component manufacture by application of electrochemical,electro-physical and photonic processes[J]. CIRP Annals-Manufacturing Technology,2014,63:703-726.
[32] 范茂祥. 涡轮叶片榫齿加工技术的发展[J]. 航空制造技术,1988,5:26-29. FAN Maoxing. Development of machining methods for turbine blade roots[J]. Aeronautical Manufacturing Technology,1988,5:26-29.
[33] 姜雪梅. 高速拉削工艺的研究与应用[J]. 制造技术与机床,2003(3):42-46. JIANG Xuemei. Research and application of high-speed broaching process[J]. Technology and Test,2003(3):42-46.
[34] 任军学,田卫军,田荣鑫,等. 开式整体叶盘通道侧铣粗加工技术的研究[J]. 机械科学与技术,2008,27(10):1220-1224. REN Junxue,TIAN Weijun,TIAN Rongxin,et al. A study of the rough milling technique of blisk tunnel[J]. Mechanical Science and Technology for Aerospace Engineering,2008,27(10):1220-1224.
[35] 丁文锋,徐九华,杨长勇,等. 航空发动机零件高效精密磨削技术的发展与应用[J]. 航空制造技术,2014(12):26-29. DING Wenfeng,XU Jiuhua,YANG Changyong,et al. Development and application of high efficiency and precision grinding technology for aeroengine components[J]. Aeronautical Manufacturing Technology,2014(12):26-29.
[36] HASHIMOTO F,YAMAGUCHI H, KRAJNIK P,et al. Abrasive fine-finishing technology[J]. CIRP Annals-Manufacturing Technology,2016,65:597-620.
[37] ZHAO Y J,YAN Y H,SONG K C,et al. Intelligent assessment of subsurface cracks in optical glass generated in mechanical grinding process[J]. Advances in Engineering Software,2018,115:17-25.
[38] ZHANG Y Z,FANG C F,HUANG G Q,et al. Modeling and simulation of the distribution of undeformed chip thickness in surface grinding[J]. International Journal of Machine Tools and Manufacture,2018,127:14-27.
[39] SHARIF ULLAH AMM,CAGGIANO A,KUBO A,et al. Elucidating grinding mechanism by theoretical and experimental investigations[J]. Materials,2018,11:27419.
[40] MAO C,LIANG C,ZHANG Y C,et al. Grinding characteristics of cBN-WC-10Co composites[J]. Ceramics International,2017,43(18):16539-16547.
[41] HUANG G Q,ZHANG M Q,GUO H,et al. The effects of temperature curves on the diamond/Ni-Cr interfacial properties in high-frequency induction brazing[J]. International Journal of Abrasive Technology,2017,8(2):133-146.
[42] LIPINSKI D,BALASZ B,RYPINA L. Modelling of surface roughness and grinding forces using artificial neural networks with assessment of the ability to data generation[J]. International Journal of Advanced Manufacturing Technology,2018,94:1335-1347.
[43] YU T Y,BASTAWROS A F,CHANDRA A. Experimental and modeling characterization of wear and life expectancy of electroplated CBN grinding wheels[J]. International Journal of Machine Tools and Manufacture,2017,121:70-80.
[44] LUO M,LUO H,ZHANG D,et al. Improving tool life in multi-axis milling of Ni-based superalloy with ball-end cutter based on the active cutting edge shift strategy[J]. Journal of Materials Processing Technology,2018,252:105-115.
[45] YAO C F,TAN L,YANG P,et al. Effects of tool orientation and surface curvature on surface integrity in ball end milling of TC17[J]. International Journal of Advanced Manufacturing Technology,2018,94:1699-1710.
[46] KACALAK W,RYPINA L,TANDECKA K. Modelling and analysis of displacement of materials characterized by different properties in the zone of microcutting[J]. Journal of Machine Engineering,2015,15(4):46-58.
[47] ZHANG Q,ZHANG S,SHI W H. Modeling of surface topography based on relationship between feed per tooth and radial depth of cut in ball-end milling of AISI H13 steel[J]. International Journal of Advanced Manufacturing Technology,2018,95:4199-4209.
[48] LUO M,LUO H,AXINTE D,et al. A wireless instrumented milling cutter system with embedded PVDF sensors[J]. Mechanical Systems and Signal Processing,2018,110:556-568.
[49] BARAHENI M,AMINI S. Feasibility study of delamination in rotary ultrasonic-assisted drilling of glass fiber reinforced plastics[J]. Journal of Reinforced Plastics and Composites,2018,37(1):3-12.
[50] YAO C F,WU D X,MA L F,et al. Surface integrity evolution and fatigue evaluation after milling mode,shot-peening and polishing mode for TB6 titanium alloy[J],Applied Surface Science,2016.11.30,387:1257-1264.
[51] WEBSTER J,TRICARD M. Innovations in abrasive products for precision grinding[J]. CIRP Annals-Manufacturing Technology,2004,53(2):597-617.
[52] KOPAC J,KRAJNIK P. High-performance grinding-A review[J]. Journal of Materials Processing Technology,2006. 175:278-284.
[53] JACKSON M J,DAVIS C J,HITCHINER M P,et al. High-speed grinding with CBN grinding wheels-applications and future technology[J]. Journal of Materials Processing Technology,2001,110:78-88.
[54] KLOCKE F,SOO S L,KARPUSCHEWSKI B,et al. Abrasive machining of advanced aerospace alloys and composites[J]. CIRP Annals-Manufacturing Technology,2015,64:581-604.
[55] SOO S L,NG E G,DEWES R C,et al. Point grinding of nickel-based superalloys[J]. Industrial Diamond Review 2002,62(2):109-116.
[56] 李长河. 磨削技术的历史、现状和展望[J]. 制造技术与机床,2012(4):17-22. LI Changhe. History,status and prospect of grinding technology[J]. Manufacturing Technology and Machine Tools,2012(4):17-22.
[57] 赵恒华,宋涛,蔡光起. 磨削加工技术的发展趋势[J]. 制造技术与机床,2012(1):55-58. ZHAO Henghua,SONG Tao,CAI Guangqi. The development trends of grinding process technology[J],Manufacturing Technology and Machine Tools,2012(1):55-58.
[58] 徐九华,张志伟,傅玉灿. 镍基高温合金高效成型磨削的研究进展与展望[J]. 航空学报,2014,35(2):351-360. XU Jiuhua,ZHANG Zhiwei,FU Yucan. Review and prospect on high efficiency profile grinding of nickel-based superalloys[J]. Acta Aeronautica et Astronautica Sinica,2014,35(2):351-360.
[59] 赫青山. 热管砂轮高效磨削加工技术研究[D]. 南京:南京航空航天大学,2013. HE Qingshan. Study on high efficiency grinding with heat pipe grinding wheels[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2013.
[60] YANG L,FU Y C,XU J H,et al. Structural design of a carbon fiber-reinforced polymer wheel for ultra-high speed grinding[J]. Materials and Design,2015,88:827-836.
[61] 王强国,高航,裴志坚,等. KDP晶体超声辅助磨削的亚表面损伤研究[J]. 人工晶体学报,2010,39(1):67-71. WANG Qiangguo,GAO Hang,PEI Zhijian,et al. Study on the subsurface damage of KDP crystal ground with ultrasonic vibration assistance[J]. Journal of Synthetic Crystals,2010,39(1):67-71.
[62] SUN J L,QIN F,CHEN P,et al. A predictive model of grinding force in silicon wafer self-rotating grinding[J]. International Journal of Machine Tools and Manufacture,2016,109:74-86.
[63] LI H N,YU T B,ZHU L D,et al. Evaluation of grinding-induced subsurface damage in optical glass BK7[J]. Journal of Materials Processing Technology,2016,229:785-794.
[64] DENKENA B,GOTTWIK L,GROVE T,et al. Temperature and energy partition for grinding of mixed oxide ceramics[J]. Production Engineering,2017(9):1-9.
[65] 田霖,徐九华,苏宏华,等. 金刚石砂轮磨削铁氧体的表面粗糙度与形貌分析[J]. 金刚石与磨料磨具工程,2009(2):26-30. TIAN Lin,XU Jiuhua,SU Honghua,et al. Analysis on surface roughness and surface topography of ferrite ground with diamond grinding wheel[J]. Diamond and Abrasives Engineering,2009(2):26-30.
[66] ZENG X,LI J H,JI S M,et al. Research on machining characteristics of double-layer elastomer in pneumatic wheel method[J]. International Journal of Advanced Manufacturing Technology,2017,92:1329-1338
[67] NADOLNY K,HERMAN D. Effect of vitrified bond microstructure and volume fraction in the grinding wheel on traverse internal cylindrical grinding of Inconel alloy 600[J]. International Journal of Advanced Manufacturing and Technology,2015,81:905-915.
[68] TEICHER U,GHOSH A,CHATTOPADHYAY A B,et al. On the grindability of titanium alloy by brazed type monolayered superabrasive grinding wheels[J]. International Journal of Machine Tools and Manufacture,2006,46:620-622.
[69] HOOD R,COOPER P,ASPINWALL D K,et al. Creep feed grinding of γ-TiAl using single layer electroplated diamond superabrasive wheels[J]. CIRP Journal of Manufacturing Science and Technoloy,2015,11:36-44.
[70] SIM K H,ZHANG F H,WANG G F,et al. Experimental comparison of ground surface characteristics for P/M Ti2AlNb-based alloy using CBN and diamond grinding wheels[J]. International Journal of Advanced Manufacturing Technology,2018,94:1885-1894.
[71] OHBUCHI Y,MATSUO T. Force and chip formation in single-grit orthogonal cutting with shaped CBN and diamond grains[J]. CIRP-Manufacturing Technology,1991,40:327-330.
[72] FENG B F,CAI G Q. Experimental study on the single-grit grinding Titanium alloy TC4 and superalloy GH4169[J]. Key Engineering Materials,2001,202-203:115-120.
[73] MEI Y M,YU Z H,YANG Z S. Numerical investigation of the evolution of grit fracture and its impact on cutting performance in single grit grinding[J]. International Journal of Advanced Manufacturing Technology,2017,89:3271-3284.
[74] ANDERSON D,WARKENTIN A,BAUER R. Experimental and numerical investigations of single abrasive-grain cutting[J]. International Journal of Machine Tools and Manufacture,2011,51:898-910.
[75] OPOZ T T,CHEN X. Experimental investigation of material removal mechanism in single grit grinding[J]. International Journal of Machine Tools and Manufacture,2012,63:32-40.
[76] SUBHASH G,ZHANG W. Investigation of the overall friction coefficient in single-pass scratch test[J]. Wear, 2002,252:123-134.
[77] DAI C W,DING W F,XU J H,et al. Influence of grain wear on material removal behavior during grinding nickel-based superalloy with a single diamond grain[J]. International Journal of Machine Tools and Manufacture,2017,113:49-58.
[78] 田霖,傅玉灿,杨路,等. 基于速度效应的高温合金高速超高速磨削成屑过程及磨削力研究[J]. 机械工程学报,2013,49(9),169-177. TIAN Lin,FU Yucan,YANG Lu,et al. Investigation of the speed effect on critical thickness of chip formation and grinding force in high speed and ultra-high speed grinding of superalloy[J]. Journal of Mechanical Engineering,2013,49(9),169-177.
[79] YAO C F,JIN Q C,HUANG X C,et al. Research on surface integrity of grinding Inconel718[J]. International Journal of Advanced Manufacturing Technology,2013,65:1019-1030.
[80] TAWAKOLI T,AZARHOUSHANG B,RASIFARD A. Wear behavior of a vitrified bond CBN wheel by ultrasonic-assisted creep feed profile grinding of Inconel 718[J]. Advanced Materials Research,2011,325:122-127.
[81] 田霖. 基于磨粒有序排布砂轮的高速磨削基础研究[D]. 南京:南京航空航天大学,2013. TIAN Lin. Fundamental research on the high speed grinding with regular abrasive distribution wheel[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2013.
[82] FAN Y H,WANG T,HAO Z P,et al. Research of plastic behavior in high-speed cutting Inconel718 based on multi-scale simulation[J]. International Journal of Advanced Manufacturing Technology,2018,94:3731-3739.
[83] LI S S,WU Y B,NOMURA M. Effect of grinding wheel ultrasonic vibration on chip formation in surface grinding of Inconel718[J]. International Journal of Advanced Manufacturing Technology,2016,86:1113-1125.
[84] QI H,WEN D H,YUAN Q L,et al. Numerical investigation on particle impact erosion in ultrasonic-assisted abrasive slurry jet micro-machining of glasses[J]. Powder Technology,2017,314:627-634.
[85] QI H,WEN D H,LU C D,et al. Numerical and experimental study on ultrasonic vibration-assisted micro-channeling of glasses using an abrasive slurry jet[J]. International Journal of Mechanical Sciences,2016,110:94-107.
[86] CHEN Z Z,TIAN L,FU Y C,et al. Chip formation of nickel-based superalloy in high speed grinding with single diamond grit[J]. International Journal of Abrasive Technology,2012,5(2):93-106.
[87] TIAN L,FU Y C,XU J H,et al. The influence of speed on material removal mechanism in high speed grinding with single grit[J]. International Journal of Machine Tools and Manufacture,2015,89:192-201.
[88] BRINKSMELER E,GLWERZEW A. Chip formation mechanisms in grinding at low speeds[J]. CIRP Annals-Manufacturing Technology,2003,52:253-258.
[89] OPOZ T T,CHEN X. Experimental study on single grit grinding of Inconel 718[J]. Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2014:1-14.
[90] OPOZ T T,CHEN X. Numerical simulation of single grit grinding[C]//Proceeding of the 16th International Conference on Automation and Computing,Birmingham,UK,2010.
[91] ZAHEDI A,AKBARI J. FEM analysis of single grit chip formation in creep-feed grinding of Inconel 718 superalloy[J]. Advanced Materials Research,2011,325:128-133.
[92] CHEN X,OPOZ T T,OLUWAJOBI A. Analysis of grinding surface creation by single-grit approach[J]. Journal of Manufacturing Science and Engineering-Transactions of the ASME,2017,139:121007-1.
[93] MATSUO T,TOYOURA S,OSHIMA E,et al. Effect of grain shape on cutting force in superabrasive single-grit tests[J]. CIRP-Manufacturing Technology,1989,38:323-326.
[94] TSO P L. Study on the grinding of Inconel 718[J]. Journal of Materials Processing Technology,1995,55:421-426.
[95] 苏旭峰. 高温合金缓进磨削烧伤机理实验研究[J]. 中国计量学院学报,2009,20(1):46-50. SU Xufeng. On creeping grinding and crack experiment of superalloys[J]. Journal of China University of Metrology,2009,20(1):46-50.
[96] XU X P,YU Y Q,HUANG H. Mechanisms of abrasive wear in the grinding of titanium (TC4) and nickel (K417) alloys[J]. Wear,2003,255:1421-1426.
[97] OSTERLE W,LI P X. Mechanical and thermal response of a nickel-base superalloy upon grinding with high removal rates[J]. Materials Science and Engineering A,1997,238:357-366.
[98] 张志伟. 镍基高温合金高效深切成型磨削关键技术研究[D]. 南京:南京航空航天大学,2014. ZHANG Zhiwei. Research on key technology of high efficiency profile grinding of nickel-based superalloy[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2014.
[99] BRINSMEIER E,MEYER D,HUESMANN-CORDES A G,et al. Metalworking fluids mechanisms and performance[J]. CIRP Annals-Manufacturing Technology,2015,64:605-628.
[100] BRIAN ROWE W. Temperatures in grinding-a review[J]. Journal of Manufacturing Science and Engineering-Transactions of the ASME,2017,139:121001-1.
[101] LI B K,LI C H,ZHANG Y B,et al. Effect of the physical properties of different vegetable oil-based nanofluids on MQLC grinding temperature of Ni-based alloy[J]. International Journal of Advanced Manufacturing Technology,2017,89:3459-3474.
[102] 任敬心,杨茂奎,李雅卿,等. 镍基高温合金的磨削特征[J]. 航空学报,1997,18(6):755-758. REN Jingxin,YANG Maokui,LI Yaqing,et al. Grinding characteristic of nickel-based superalloy[J]. Acta Aeronautica et Astronautica Sinica,1997,18(6):755-758.
[103] ZENG Q D,LIU G,LIU L,et al. Investigation into grindability of a superalloy and effects of grinding parameters on its surface integrity[J]. Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2014,229(2):238-250.
[104] 傅玉灿,田霖,徐九华,等. 磨削过程建模与仿真研究现状[J]. 机械工程学报,2015,51(7):197-205. FU Yucan,TIAN Lin,XU Jiuhua et al. Development and application on the grinding process modeling and simulation[J]. Journal of Mechanical Engineering,2015,51(7):197-205.
[105] PATNAIK D U S,SINGH V,VENKATESWARA R P. A new model for grinding force prediction and analysis[J]. International Journal of Machine Tools and Manufacture,2010,50:231-240.
[106] LI H N,AXINTE D. On a stochastically grain-discretized model for 2D/3D temperature mapping prediction in grinding[J]. International Journal of Machine Tools and Manufacture,2017,116:60-76.
[107] ABU-MAHFOUZ I,ARISS O E,ESFAKUR R A H M,et al. Surface roughness prediction as a classification problem using support vector machine[J]. International Journal of Advanced Manufacturing Technology,2017,92:803-815.
[108] ULUTAN D,OZEL T. Machining induced surface integrity in titanium and nickel alloys:A review[J]. International Journal of Machine Tools and Manufacture,2011,51:250-280.
[109] ZHANG D,LI C,ZHANG Y,et al. Experimental research on the energy ratio coefficient and specific grinding energy in nanoparticle jet MQL grinding[J]. International Journal of Advanced Manufacturing Technology,2015,78:1275-1288.
[110] LIU Q,HUANG G Q,XU X P,et al. A study on the surface grinding of 2D C/SiC composites[J]. International Journal of Advanced Manufacturing Technology,2017,93:1595-1603.
[111] MUELLER S,WIRTZ C,TRAUTH D,et al. Material removal mechanisms in grinding of two-phase brittle materials[J]. International Journal of Advanced Manufacturing Technology,2018,95:287-298.
[112] ZHANG Z Y,SHI Z F,DU Y F,et al. A novel approach of chemical mechanical polishing for a titanium alloy using an environment-friendly slurry[J]. Applied Surface Science,2018,427:409-415.
[113] LIU Q,HUANG G Q,FANG C F,et al. Experimental investigations on grinding characteristics and removal mechanisms of 2D-Cf/C-SiC composites based on reinforced fiber orientations[J]. Ceramics International,2017,43(17):15266-15274.
[114] THAKUR A,GANGOPADHYAY S. State-of-the-art in surface integrity in machining of nickel-based superalloys[J]. International Journal of Machine Tools and Manufacture,2016,100:25-54.
[115] QI H,FAN J M,WANG J,et al. Impact erosion by high velocity micro-particles on a quartz crystal[J]. Tribology International,2015,82:200-210.
[116] SINHA M K,SETTI D,GHOSH S,et al. An investigation on surface burn during grinding of Inconel 718[J]. Journal of Manufacturing Processes,2016,21:124-133.
[117] BHADURI D,SOO S L,NOVOVIC D,et al. Ultrasonic assisted creep feed grinding of Inconel 718[J]. Procedia CIRP 2013,6:615-620.
[118] YAO C F,JIN Q C,HUANG X C,et al. Research on surface integrity of grinding Inconel718[J]. International Journal of Advanced Manufacturing Technology,2013,65:1019-1030.
[119] XU X P,YU Y Q,XU H J. Effect of grinding temperatures on the surface integrity of a nickel-based superalloy[J]. Journal of Materials Processing Technology,2002,129:359-363.
[120] LI H N,AXINTE D. Textured grinding wheels:A review[J]. International Journal of Machine Tools and Manufacture,2016,109:8-35.
[121] CHEN M,LI X T,SUN F G,et al. Studies on the grinding characteristics of directionally solidified nickel-based superalloy[J]. Journal of Materials Processing Technology,2001,116:165-169.
[122] ZENG Q D,LIU G,LIU L,et al. Investigation into grindability of a superalloy and effects of grinding parameters on its surface integrity[J]. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture,2014,229(2):238-250.
[123] XU X P,YU Y Q. XPS and SEM characterization of wheel/workpiece interface in grinding of superalloy[J]. Surface and Interface Analysis,2002,33:343-350.
[124] BARRETO L O,RUZZI R S. Performance evaluation of the minimum quantity of lubricant technique with auxiliary cleaning of the grinding wheel in cylindrical grinding of N2711 steel[J]. Journal of Manufacturing Science and Engineering-Transactions of the ASME,2017,139:121018.
[125] YANG M,LI C H,ZHANG Y B,et al. Maximum undeformed equivalent chip thickness for ductile-brittle transition of zirconia ceramics under different lubrication conditions[J]. International Journal of Machine Tools and Manufacture,2017,122:55-65.
[126] 黄春新,张定华,姚倡锋,等. 磨削参数对GH4169高温合金磨削表面特征影响研究[J]. 中国机械工程,2014,25(2):210-214. HUANG Chunxin,ZHANG Dinghua,YAO Changfeng,et al. A study of influence of grinding parameters on surface characteristics during grinding GH4169 superalloy[J]. China Mechanical Engineering,2014,25(2):210-214.
[127] BHADURI D,SOO S L,ASPINWALL K K,et al. A study on ultrasonic assisted creep feed grinding of nickel based superalloys[J]. Procedia CIRP,2012,1:359-364.
[128] LIU Q,CHEN X,GINDY N. Assessment of Al2O3 and superabrasive wheels in nickel-based alloy grinding[J]. International Journal of Advanced Manufacturing Technology,2007,33:940-951.
[129] YANG X,LIU C R. Machining titanium and its alloys[J]. Machining Science and Technology,1999,3(1):107-139.
[130] CAO D J,TA N,ZHANG L. Unit-cell design for two-dimensional phase-field simulation of microstructure evolution in single-crystal Ni-based superalloys during solidification[J]. Progress in Natural Science:Materials International,2017,27(6):678-686.
[131] CAO Y L,GUAN J Y,LI B,et al. Modeling and simulation of grinding surface topography considering wheel vibration[J]. International Journal of Advanced Manufacturing Technology,2013,66:937-945.
[132] YU H,WANG J,LU Y. Simulation of grinding surface roughness using the grinding wheel with an abrasive phyllotactic pattern[J]. International Journal of Advanced Manufacturing Technology,2016,84:861-871.
[1] 吴世凯, 张建超, 廖洪彬, 王晓宇. 聚变堆低活化铁素体/马氏体(RAFM)钢焊接研究进展[J]. 机械工程学报, 2019, 55(2): 195-203.
[2] 周祥曼, 田启华, 杜义贤, 柏兴旺, 张海鸥. 电弧增材成形单道两层熔积过程中的晶粒生长模拟[J]. 机械工程学报, 2018, 54(22): 86-94.
[3] 刘佳, 白陈明, 石岩, 李忠, 张宏. 高氮钢激光-电弧复合焊接熔池表面流动行为[J]. 机械工程学报, 2018, 54(22): 55-62.
[4] 马可, 薛龙, 黄军芬, 黄继强, 邹勇, 姜天胜. GMAW自动焊熔透影响因素分析及多元回归预测[J]. 机械工程学报, 2018, 54(18): 55-61.
[5] 刘佳, 白陈明, 崔博, 石岩, 李忠, 张宏. 超声振动对高氮钢激光-电弧复合焊接接头组织与性能的影响研究?[J]. 机械工程学报, 2018, 54(16): 118-126.
[6] 肖磊, 樊丁, 黄健康. 交变磁场作用下的GTAW非稳态电弧数值模拟[J]. 机械工程学报, 2018, 54(16): 79-85.
[7] 周惦武, 刘金水, 卢源志, 周来沁, 潘井春. 添加Si粉激光深熔焊钢/铝接头的显微组织与性能[J]. 机械工程学报, 2018, 54(14): 58-65.
[8] 杨建国, 郝建松, 李曰兵, 郑文健, 高增梁, 张鹏程. 含表面裂纹焊接结构疲劳评定的质量等级方法[J]. 机械工程学报, 2018, 54(14): 82-89.
[9] 王建峰, 孙清洁, 张顺, 刘一搏, 冯吉才. 基于电弧气泡调控的水下湿法焊接稳定性研究[J]. 机械工程学报, 2018, 54(14): 50-57.
[10] 刘剑桥, 李滋亮, 任森栋, 梁伟, 邓德安. 外部拘束条件下Q345钢单道堆焊接头面外变形机理的探讨[J]. 机械工程学报, 2018, 54(14): 90-97.
[11] 周祥曼, 田启华, 杜义贤, 柏兴旺, 张海鸥. 外加横向磁场作用电弧增材成形过程中的传热传质仿真[J]. 机械工程学报, 2018, 54(12): 193-206.
[12] 付斯林, 李成新, 魏瑛康, 雒晓涛, 杨冠军, 李京龙, 李长久. 冷喷连接铝铜异质接头的组织结构和力学性能[J]. 机械工程学报, 2018, 54(10): 93-102.
[13] 周彦彬, 史吉鹏, 刘黎明. MAG-TIG双电弧共熔池热源打底焊接自由成形研究[J]. 机械工程学报, 2018, 54(10): 78-84.
[14] 李滋亮, 刘剑桥, 任森栋, 李索, 邓德安. 尺寸因素对SUS304不锈钢残余应力和焊接变形的影响[J]. 机械工程学报, 2018, 54(10): 59-67.
[15] 曹健, 贺宗晶, 亓钧雷, 王厚勤, 冯吉才. 采用(Ti/Ni/Cu)f多层箔钎焊C/C复合材料与TiAl合金[J]. 机械工程学报, 2018, 54(9): 108-114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05060958号 中国机械工程学会版权所有,未经同意请勿转载
中国机械工程学会/北京市海淀区首体南路9号主语国际4号楼11层,邮编100048
0