Please wait a minute...

机械工程学报  2019, Vol. 55 Issue (2): 115-125    DOI: 10.3901/JME.2019.02.115
  运载工程 本期目录 | 过刊浏览 | 高级检索 |
动力电池外部短路故障热-力影响与分析
熊瑞, 马骕骁, 杨瑞鑫, 陈泽宇
北京理工大学机械与车辆学院电动车辆国家工程实验室 北京 100081
Thermo-mechanical Influence and Analysis of External Short Circuit Faults in Lithium-ion Battery
XIONG Rui, MA Suxiao, YANG Ruixin, CHEN Zeyu
National Engineering Laboratory for Electric Vehicles, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081
全文: PDF(494 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 动力电池安全性问题因电动汽车安全事故频发而备受关注,短路故障则被认为是大部分动力电池安全事故发生的主要原因。针对外部短路故障,以某圆柱形锂离子动力电池为研究对象,根据能量守恒定律,建立动力电池在外部短路情况下的三维热模型,获取动力电池单体的内外温度场分布,并在此基础上建立热-力模型,仿真分析动力电池内部热应力分布,计算结果表明:在25℃下动力电池两端内部活性材料与壳体的接触部位产生最大热应力,热应力随时间变化趋势与表面温度变化一致,且处于低段初始荷电状态(State of charge,SOC)动力电池的峰值热应力较高。该模型的应用可以为同类型动力电池节约测试成本、结构优化减少热应力以增加安全性提供一定的指导作用,并提高对外部短路的动力电池响应规律的认识。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract:The safety of batteries has attracted much attention due to the frequent occurrence of electric vehicle safety accidents. The short circuit faults of batteries are considered to be the principal issues of most safety accidents. For the external short circuit faults, a cylindrical lithium-ion battery is taken as the research object, and according to the law of conservation of energy, a three-dimensional thermal model of the battery under the external short circuit condition is established. This model can be used to obtain the temperature distribution of the internal and external temperature of the battery. After that, a thermo-mechanical model is established. The heat stress distribution inside the battery is simulated and the results show that the maximum heat stress occurs in the contact part of the active material and the shell at both ends of the battery at 25℃, and its trend with time is consistent with the surface temperature, and the peak heat stress of the battery at the low-stage SOC(state of charge) is rather large. The application of this model can provide a guiding role for the same type of battery saving test cost, structural optimization and reduction of heat stress to increase safety, and improve the understanding of the response law of the battery after external short circuit.
收稿日期: 2018-09-29      出版日期: 2019-01-20
:  TM912  
基金资助:国家重点研发计划资助项目(2018YFB0104100)
通讯作者: 熊瑞(通信作者),男,1985年出生,副教授,博士研究生导师。主要研究方向为电动汽车动力电池系统管理与综合控制。E-mail:rxiong@bit.edu.cn   
作者简介: 马骕骁,男,1996年出生,硕士研究生。主要研究方向为动力电池系统安全管理。E-mail:masuxiao@qq.com;杨瑞鑫,男,1988年出生,博士研究生。主要研究方向为新能源汽车动力电池系统管理。E-mail:yangruixin@bit.edu.cn;陈泽宇,男,1982年出生,国内访问学者。主要研究方向为电动汽车电池安全与故障诊断技术。E-mail:chenzy@mail.neu.edu.cn
引用本文:   
熊瑞, 马骕骁, 杨瑞鑫, 陈泽宇. 动力电池外部短路故障热-力影响与分析[J]. 机械工程学报, 2019, 55(2): 115-125.
XIONG Rui, MA Suxiao, YANG Ruixin, CHEN Zeyu. Thermo-mechanical Influence and Analysis of External Short Circuit Faults in Lithium-ion Battery. Journal of Mechanical Engineering, 2019, 55(2): 115-125.
链接本文:  
http://qikan.cmes.org/jxgcxb/CN/10.3901/JME.2019.02.115      或      http://qikan.cmes.org/jxgcxb/CN/Y2019/V55/I2/115
[1] KAEDEN E,PLOUMEN S,FRICKE B,et al. Energy storage devices for future hybrid electric vehicles[J]. Journal of Power Sources,2007,168(1):2-11.
[2] 王浩,杨聚平,王莉,等. 锂离子电池的安全性问题[J]. 新材料产业,2012(9):88-94. WANG Hao,YANG Juping,WANG Li,et al. Safety issues of lithium ion batteries[J]. Advanced Materials Industry,2012(9):88-94.
[3] PENG P,JIANG F. Thermal safety of lithium-ion batteries with various cathode materials:A numerical study[J]. International Journal of Heat & Mass Transfer,2016,103:1008-1016.
[4] SAW L H,POON H M,HUI S T,et al. Novel thermal management system using mist cooling for lithium-ion battery packs[J]. Applied Energy,2018,223:146-158.
[5] 刘霏霏,兰凤崇,陈吉清. 基于动态内热源特性的车用锂离子动力电池温度场仿真及试验[J]. 机械工程学报,2016,52(8):141-151. LIU Feifei,LAN Fengchong,CHEN Jiqing. Simulation and experiment on temperature field of lithium-ion power battery for vehicle based on characteristic of dynamic heat source[J]. Journal of Mechanical Engineering,2016,52(8):141-151.
[6] ABADA S,MARLAIR G,LECOCQ A,et al. Safety focused modeling of lithium-ion batteries:A review[J]. Journal of Power Sources,2016,306:178-192.
[7] 徐佳宁,梁栋滨,魏国,等. 串联电池组接触电阻故障诊断分析[J]. 电工技术学报,2017,32(18):106-112. XU Jianing,LIANG Dongbin,WEI Guo,et al. Series battery pack's contact resistance fault diagnosis analysis[J]. Transactions of China Electrotechnical Society,2017,32(18):106-112
[8] SPOTNITZ R,FRANKLIN J. Abuse behavior of high-power,lithium-ion cells[J]. Journal of Power Sources,2003,113(1):81-100.
[9] ZAVALIS T G,BEHM M,LINDBERGH G. Investigation of short-circuit scenarios in a lithium-ion battery cell[J]. Journal of the Electrochemical Society,2012,159(6):A848-A859.
[10] FANG W,RAMADASS P,ZHANG Z. Study of internal short in a Li-ion cell-Ⅱ. Numerical investigation using a 3D electrochemical-thermal model[J]. Journal of Power Sources,2014,248(4):1090-1098.
[11] XIONG R,ZHANG Y,HE H,et al. A double-scale,particle-filtering,energy state prediction algorithm for lithium-ion batteries[J]. IEEE Transactions on Industrial Electronics,2018,65(2):1526-1538.
[12] 李仲兴,李颖,周孔亢,等. 纯电动汽车不同行驶工况下电池组的温升研究[J]. 机械工程学报,2014,50(16):180-185. LI Zhongxing,LI Ying,ZHOU Kongkang,et al. Temperature study of pure electric vehicles battery pack at different driving conditions[J]. Journal of Mechanical Engineering,2014,50(16):180-185.
[13] 杨凯,李大贺,陈实,等. 电动汽车动力电池的热效应模型[J]. 北京理工大学学报,2008,28(9):782-785. YANG Kai,LI Dahe,CHEN Shi,et al. Thermal model of batteries for electrical vehicles[J]. Transactions of Beijing Institute of Technology,2008,28(9):782-785.
[14] BERNARDI D,PAWLIKOWSKI E,NEWMAN J. General energy balance for battery systems[J]. Journal of the Electrochemical Society,1984,132(1):5-12.
[15] 云凤玲. 高比能量锂离子动力电池热性能及电化学-热耦合行为的研究[D]. 北京:北京有色金属研究总院,2016. YUN Fengling. Study on thermal performance and electrochemical-thermal couple behavior of high specific energy lithium ion power battery[D]. Beijing:General Research Institute for Nonferrous Metals,2016.
[16] KIM G H,PESARAN A,SPOTNITZ R. A three-dimensional thermal abuse model for lithium-ion cells[J]. Journal of Power Sources,2007,170(2):476-489.
[17] HATCHARD T D,MACNEIL D D,BASU A,et al. Thermal model of cylindrical and prismatic lithium-ion cells[J]. Journal of the Electrochemical Society,2001,148(7):A755-A761.
[18] 林海军,滕召胜,杨圣洁,等. 数字温度传感器自适应动态补偿方法[J]. 仪器仪表学报,2009,30(1):138-142. LIN Haijun,TENG Zhaosheng,YANG Shengjie,et al. Adaptive dynamic compensation method for digital temperature sensor[J]. Chinese Journal of Scientific Instrument,2009,30(1):138-142.
[1] 胡晓松, 唐小林. 电动车辆锂离子动力电池建模方法综述[J]. 机械工程学报, 2017, 53(16): 20-31.
[2] 林成涛;仇斌;陈全世. 电流输入电动汽车电池等效电路模型的比较[J]. , 2005, 41(12): 76-81.
[3] 戴海峰;孙泽昌;魏学哲. 利用双卡尔曼滤波算法估计电动汽车用锂离子动力电池的内部状态[J]. , 2009, 45(6): 95-101.
[4] 戴海峰;魏学哲;孙泽昌. 基于扩展卡尔曼滤波算法的燃料电池车用锂离子动力电池荷电状态估计[J]. , 2007, 43(2): 92-95.
[5] 张承宁;钟静宏;张旺. 电动车辆铅酸电池快速充电系统[J]. , 2006, 42(增刊): 103-105.
[6] 王军平;曹秉刚;陈全世. 基于自适应滤波的电动汽车动力电池荷电状态估计方法[J]. , 2008, 44(5): 76-79.
[7] 王军平;陈全世;林成涛. 镍氢电池组的荷电状态估计方法研究[J]. , 2005, 41(12): 62-65.
[8] 王军平;曹秉刚;康龙云;CHO Hyungsuck. 基于图像矩的视觉伺服控制及应用[J]. , 2008, 44(10): 308-312.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05060958号 中国机械工程学会版权所有,未经同意请勿转载
中国机械工程学会/北京市海淀区首体南路9号主语国际4号楼11层,邮编100048
0